

Immunic Therapeutics Inaugural R&D Day

NASDAQ: IMUX | May 19, 2020

Cautionary Note Regarding Forward-Looking Statements

This presentation contains "forward-looking statements" that involve substantial risks and uncertainties for purposes of the safe harbor provided by the Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, included in this presentation regarding strategy, future operations, future financial position, future revenue, projected expenses, prospects, plans and objectives of management are forward-looking statements. Examples of such statements include, but are not limited to, statements relating to Immunic's three development programs and the targeted diseases; the potential for IMU-838 to safely and effectively target diseases; preclinical and clinical data for IMU-838; the timing of current and future clinical trials; the potential for IMU-838 as a treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections associated with coronavirus disease 2019 (COVID-19) and any clinical trials, collaborations and approvals relating to such potential treatment; the nature, strategy and focus of the Company; and the development and commercial potential of any product candidates of the Company. Immunic may not actually achieve the plans, carry out the intentions or meet the expectations or projections disclosed in the forward-looking statements and you should not place undue reliance on these forward-looking statements. Such statements are based on management's current expectations and involve risks and uncertainties. Actual results and performance could differ materially from those projected in the forward-looking statements as a result of many factors, including, without limitation, the COVID-19 pandemic, risks and uncertainties associated with the ability to project future cash utilization and reserves needed for contingent future liabilities and business operations, the availability of sufficient resources to meet business objectives and operational requirements, the fact that the results of earlier studies and trials may not be predictive of

A further list and descriptions of these risks, uncertainties and other factors can be found in the section captioned "Risk Factors," in the Company's Annual Report on Form 10-K for the fiscal year ended December 31, 2019, filed with the Securities and Exchange Commission ("SEC") on March 16, 2020, the Company's Quarterly Report on Form 10-Q for the quarter ended March 31, 2020, filed with the SEC on May 8, 2020, and in the Company's subsequent filings with the Securities and Exchange Commission. Copies of these filings are available online at www.sec.gov or ir.immunic-therapeutics.com/sec-filings and on request from Immunic.

 \rightarrow

Any forward-looking statement made in this presentation speaks only as of the date of this presentation. Immunic disclaims any intent or obligation to update these forward-looking statements to reflect events or circumstances that exist after the date on which they were made. Immunic expressly disclaims all liability in respect to actions taken or not taken based on any or all the contents of this presentation.

Agenda

1	09:00 - 09:10 Welcome and Company Introduction	C	11:15 - 11:25 Introduction to IMU-935	
2	09:10 - 09:30 Introduction to Lead Asset IMU-838	6	11:25 - 11:40 Positioning of IMU-935 and Ongoing Phase 1 Program	
3	09:30 - 10:00 IMU-838 as a Potential Treatment Option for COVID-19		11:40 - 11:50 Introduction to IMU-856	
4	10:00 - 10:40 Multiple Sclerosis Dr. Robert Fox	7	11:50 - 12:30 Inflammatory Bowel Disease Dr. Jean-Frederic Colombel	
5	10:40 - 11:15 Clinical Development Program for IMU-838		12:30 - 12:45 Positioning of IMU-856 and Clinical Planning	

8

Immunic Therapeutics

Welcome and Company Introduction

Our Vision

We are developing new therapies with best-in-class potential for the treatment of chronic inflammatory and autoimmune diseases.

Leadership Team

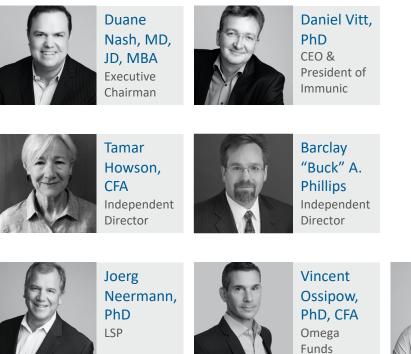
Company is led by an experienced management team

PhD CEO & President of Immunic

Daniel Vitt,

Duane Nash, MD, JD, MBA Executive Chairman

Andreas Muehler, MD, MBA СМО



Manfred Groeppel, PhD CO0

Glenn Whaley Vice President Finance, Principal Financial and Accounting Officer

Renowned international board of directors

Jan Van den Bossche Fund+

Development Pipeline

Program	Indication	Target	Preclinical	Phase 1	Phase 2	Phase 3
IMU-838	Multiple Sclerosis	DHODH				
	Ulcerative Colitis	DHODH				
	Crohn's Disease	DHODH				
	PSC	DHODH				Investigator-Sponsored Trial performed at Mayo Clinic / NIH
	COVID-19	DHODH				
IMU-935	Psoriasis	ROR y t				
	Orphan Al Diseases	ROR y t				
IMU-856	GI	Intestinal Barrier Function				

Completed or ongoing In preparation or planned

Introduction to Lead Asset IMU-838

Mode of
ActionPreclinical
SummaryClinical
Summary

Introduction to Lead Asset IMU-838

Mode of
ActionPreclinical
SummaryClinical
Summary

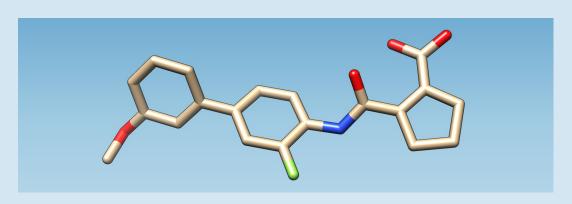
IMU-838: Key Characteristics

Oral small molecule

- Active moiety vidofludimus MW 355 g/mol
- IMU-838 is calcium salt of vidofludimus
- Initially developed by 4SC AG as free acid form
- Acquired by Immunic in 2016

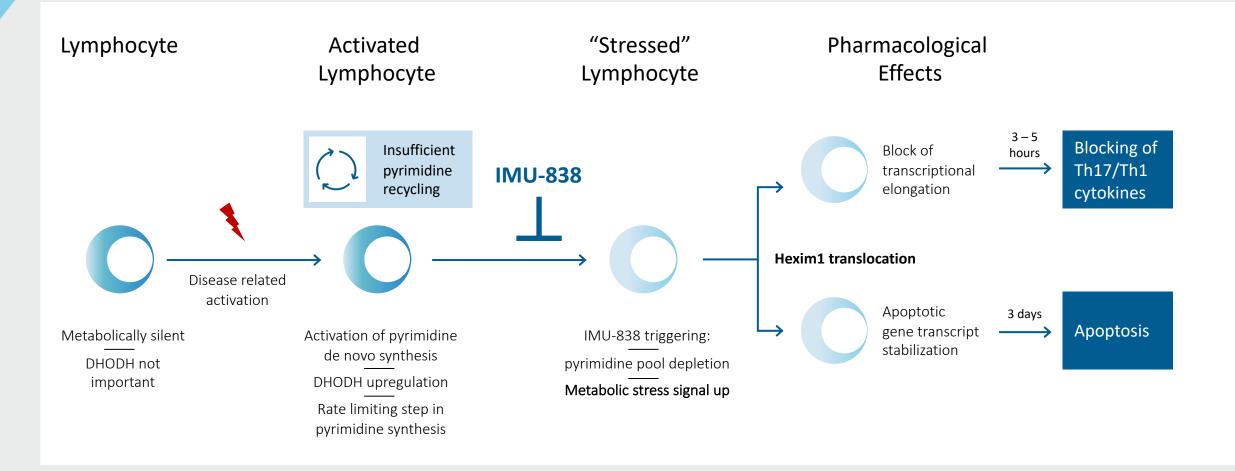

Small white tablet

Oral



Once or twice daily

Human t-max ~ 2-3 hours



Chemical name (IUPAC): 2-(3-Fluoro-3⁻-methoxybiphenyl-4-ylcarbamoyl)-cyclopent-1-enecarboxylic acid

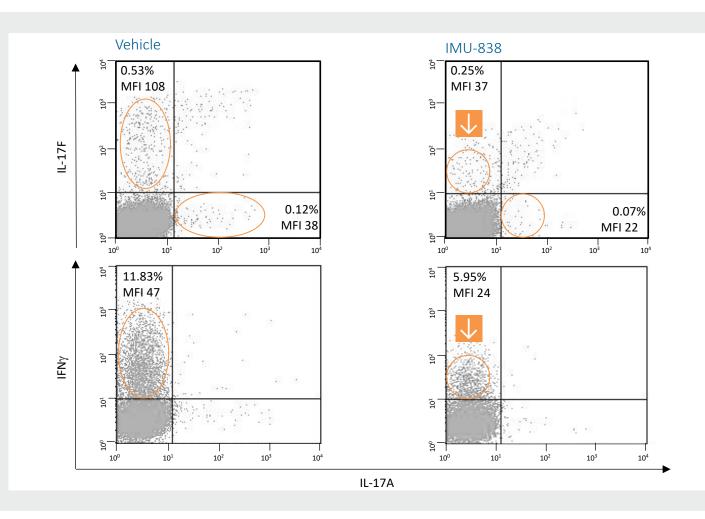
Mode of Action: DHODH Targeting Leads to Metabolic Stress in Metabolically Activated Cells

Adapted from Tan et al., 2016, Mol Cell 62

Introduction to Lead Asset IMU-838

Mode of Action

Preclinical Summary Clinical Summary


IMU-838 Reduces Hyperactive Immune Cells - IL-17F/IFNγ High-Producers

Hyperactive/high-affinity immune cells are specifically dependent on DHODH

High metabolic turnover in high-affinity T cells

High amounts of nucleotides for mRNA synthesis (up to 100-fold higher nucleotide demand for RNA synthesis than for DNA synthesis)

High producers of IL-17 and IFN $\!\gamma$

Klotz et al., Science Translational Medicine, 11, Mai 2019

IMU-838 Provides a Less Inflammatory Environment

Stopping a pro-inflammatory environment

→ Repression of pro-inflammatory cytokines

IL-17A/F

GM-CSF

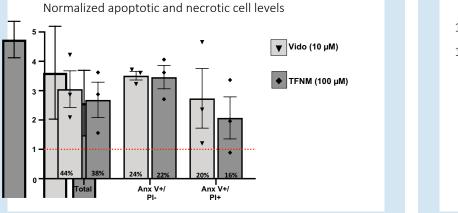
1L-4

IFNγ

IL-6

IL-10

IP-10


IL-1ß

Induction of apoptosis in stimulated PBMCs¹

10 μM of IMU-838 induces similar % of apoptosis compared with 100 μM teriflunomide

Moderate induction of regulatory macrophages and strong synergism in combo with Infliximab

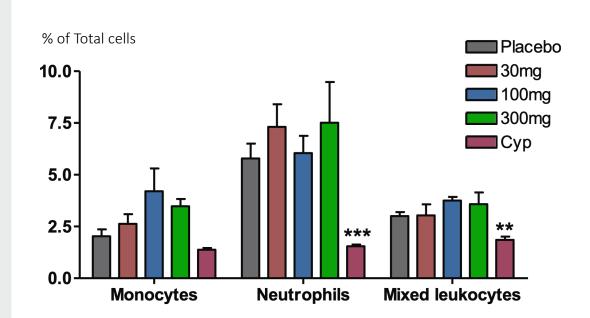
Induction of CD14⁺CD206⁺ macrophages (% of 6TG)

1 Peripheral Blood Mononuclear Cells, 2 Mixed Lymphocyte Reaction Kohlhof et at., Poster UEGW 2019

 \rightarrow Induction of some important

anti-inflammatory cytokines

No General Antiproliferative Effects by IMU-838



IMU-838 did not induce monocyto-, neutroand leukopenia in a mouse model of SLE

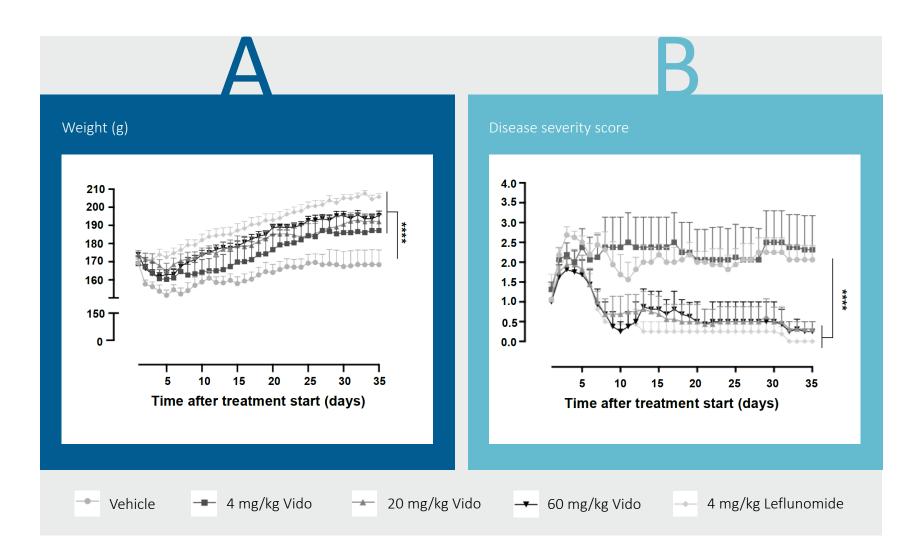
 Indicating a significantly lower bone marrow toxicity compared to Cyclophosphamide

IMU-838 has a natural selectivity towards hyper activated immune cells and exhibits no general immune suppressive features

SLE: Systemic Lupus Erythematodis Graph is adapted from Kulkarni et al., Am J Pathol. 2010 Jun;176(6):2840-7. Epub 2010 Apr 22 Muehler et al., ECTRIMS 2019, Abstract A-1026-0031-00242

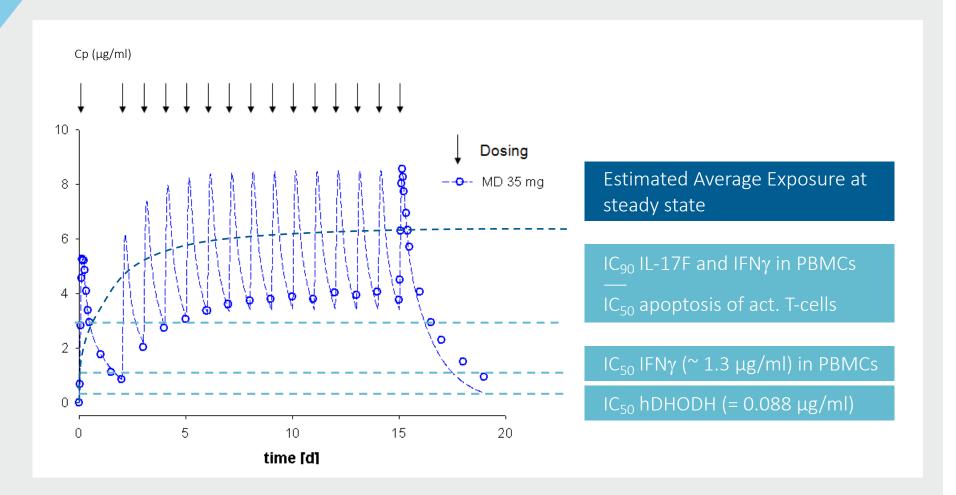
IMU-838 Demonstrated Activity in RRMS Animal Models

 \rightarrow


IMU-838 demonstrates dose-dependent activity in rat EAE model

 \rightarrow

Improvement of body weight for all doses tested


Improvement of disease severity for 20 and 60 mg/kg

Muehler et al., 2020 RRMS: Relapsing-Remitting Multiple Sclerosis

14 Day Multiple Dosing of 35 mg Vidofludimus in Humans – Corresponds to 30 mg IMU-838

At 35 mg vidofludimus (~30 mg IMU-838), exposure in patients is continuously above the 90 % inhibition level (IC₉₀) of IL-17F and IFNγ

Organ distribution study in rats shows high exposure in gut, liver and lung

Introduction to Lead Asset IMU-838

Mode of	Preclinical	Clinical
Action	Summary	Summary

IMU-838 | Clinical Summary

ENTRANCE Study	Phase 1	Safety
IBD	Results	Summary
Comparison to Teriflunomide		

IMU-838 | Clinical Summary

ENTRANCE Study	Phase 1	Safety
IBD	Results	Summary
Comparison to		

Teriflunomide

ENTRANCE Study: Patient Population

All patients with steroid-dependent remission

- Two prior failed attempts to discontinue corticosteroids
- Currently on 20 mg prednisolone equivalent of higher
- No active disease

Almost equal distribution of patients with CD and UC

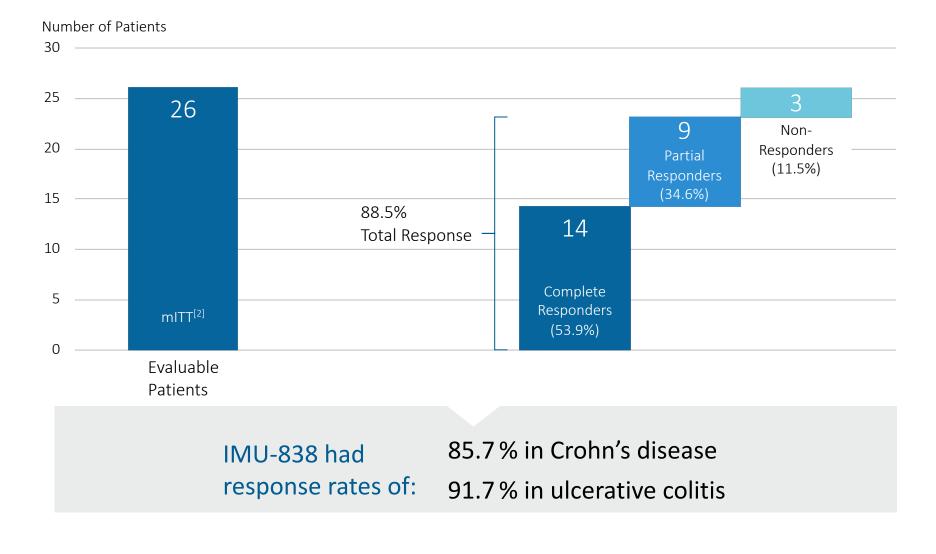
Median duration of disease in CD 8.2 years and in UC 3.5 years

Prior therapies other than corticosteroids (enrollment of 34 patients)

- N=25 mesalazines
- N=16 azathioprine or mercaptopurine
- N= 2 methotrexate
- N= 5 TNFα inhibitors [adalimumab (3) and infliximab (2)]

Herrlinger et al. J Crohns Colitis. 2013 Sep;7(8):636-43 CD: Crohn's Disease, UC: Ulcerative Colitis

ENTRANCE Study: Primary Efficacy Results



ENTRANCE Study:^[1]

- Study performed with active moiety vidofludimus
- All patients failed two attempts to taper down steroids

→ Open-label

Primary efficacy endpoint: steroid-free/steroid-reduced remission (week 12)

Herrlinger et.al., 2011, Gastroenterology 140:588.
mITT: modified intent to treat

IMU-838 | Clinical Summary

ENTRANCE Study	Phase 1	Safety
IBD	Results	Summary
Comparison to Teriflunomide		

IMU-838: Publication of Phase 1 Data

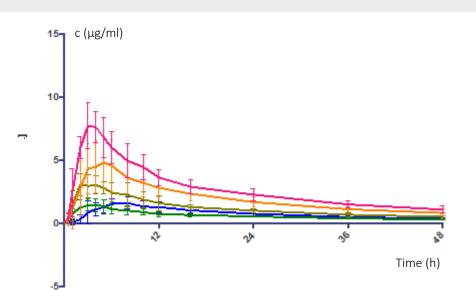
Safety, Tolerability and Pharmacokinetics of Vidofludimus calcium (IMU-838) After Single and Multiple Ascending Oral Doses in Healthy Male Subjects

Andreas Muehler, Hella Kohlhof, Manfred Groeppel & Daniel Vitt

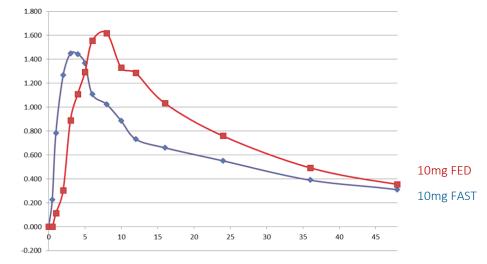
European Journal of Drug Metabolism and Pharmacokinetics

ISSN 0378-7966

Eur J Drug Metab Pharmacokinet DOI 10.1007/s13318-020-00623-7

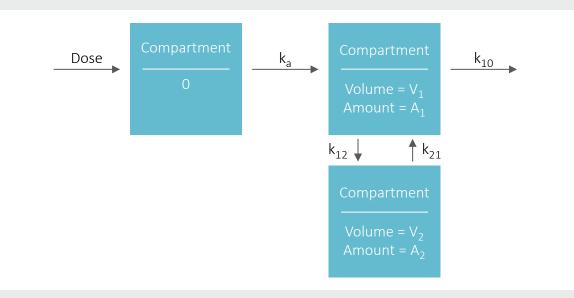


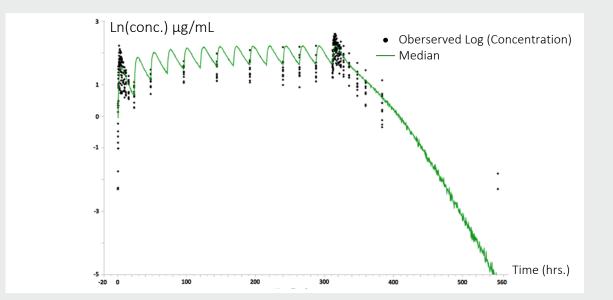
IMU-838: Human Pharmacokinetic Profile



IMU-838 is orally bioavailable with linear pharmacokinetics

- Dose-linear pharmacokinetics
- T_{max} 2-3 h after dosing
- Terminal elimination half-life $t_{1/2}$ is roughly 30 hours
- Accumulation factor in multiple dosing is approximately 2
- No detrimental food effect
- Increase in t_{max} and c_{max} is thought to be related to delayed stomach emptying after food consumption




Average 10mg FAST vs. 10mg FED

IMU-838: Population Pharmacokinetic Model (Based on Phase 1 Studies)

The prediction has been obtained by adjusting the parameters of the PK model to a body weight of 70 kg:

CL = 0.255 L/h	Q = 0.341 L/h	ka = 0.164 h-1	k12 = Q/V1
V1 = 3.145 L	V2 = 5.684 L	k10 = CL/V1	k21 = Q/V2

Observed pharmacokinetic data from 40 mg once daily IMU-838 (14-day multiple ascending dose phase 1 study) and derived population PK model

- Steady state trough levels reached within 5-7 days
- Within 10 days, IMU-838 has cleared from blood for most patients

Muehler et al. Eur J Drug Metab Pharmacokinet (2020). https://doi.org/10.1007/s13318-020-00623-7

IMU-838 | Clinical Summary

ENTRANCE Study	Phase 1	Safety
IBD	Results	Summary
Comparison to Teriflunomide		

IMU-838: Safety Summary

Safety profile similar to placebo

$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
\land

No signal for hepatotoxicity (and no higher risk of LFT elevations)

No signal for neutropenia or alopecia

No increased rates of infections & infestations

Current drug exposure summary

Total exposure of more than approximately 650 human subjects and patients

Safe dose range for IMU-838

Doses of up to the highest level tested (50 mg) can be used in further clinical trials

COMPONENT Trial: Publication of Safety Summary

The Selective Oral Immunomodulator Vidofludimus in Patients with Active Rheumatoid Arthritis: Safety Results from the COMPONENT Study

Andreas Muehler, Hella Kohlhof, Manfred Groeppel & Daniel Vitt

COMPONENT Trial: Safety & Tolerability Data Infections & Infestations

TEAEs (incidence ≥ 2%) by MedDRA System Organ Class	Vidofludimus 35 mg n=122		Placebo n=119	
	n	%	n	%
Total number of patients with probably related TEAEs	5	4.1	10	8.4
Gastrointestinal disorders	1	0.8	4	3.4
Investigations	0	0	3	2.5
Total number of patients with possibly related TEAEs	14	11.5	19	16.0
Gastrointestinal disorders	2	1.6	4	3.4
Infections and infestations	3	2.5	5	4.2
Investigations	3	2.5	1	0.8
Nervous system disorders	1	0.8	3	2.5
Skin and subcutaneous tissue disorders	4	3.3	1	0.8

Muehler et al. 2019 TEAE = treatment-emergent adverse events

COMPONENT Trial: Safety & Tolerability Data Hepatic Events & Elevation of Liver Enzymes

Hepatotoxic TEAEs by preferred Term	Vidofludimus 35 mg n=122		Placebo n=119	
	n	%	n	%
Biliary Colic	0	0.0	1	0.8
Hepatic Pain	0	0.0	1	0.8
Hepatic Steatosis	0	0.0	1	0.8
Hepatocellular Injury	1	0.8	0	0.0
γ-Glutamyl Transferease Increased	1	0.8	1	0.8
Alanine Aminotransferase Increased	0	0.0	1	0.8
Hepatic Enzyme Increased	0	0.0	1	0.8
Patients with TEAEs of liver events (%)	2	1.6	6	5.0

Muehler et al. 2019 TEAE = treatment-emergent adverse events

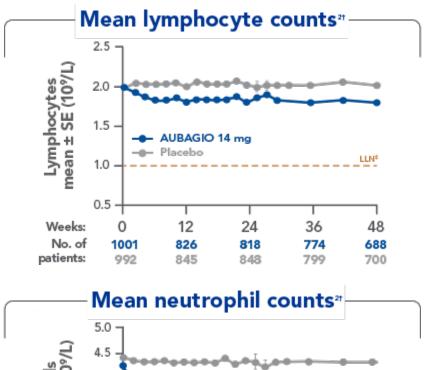
IMU-838: Interim Dosing Analysis of Phase 2 Study in UC Established Broad Safe Dose Range (August 2019)

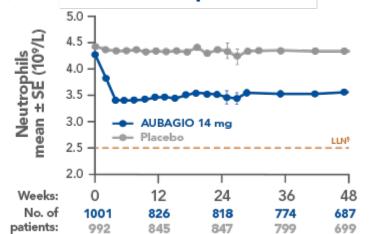
- Ineffective and/or intolerable IMU-838 dose(s) would be identified in this interim analysis based on all available clinical, endoscopic, biomarker, PD, and safety data
- Performed by an unblinded data review committee (DRC)

Interim Analysis Confirmed Good Safety Profile

- No intolerable dose identified
- No safety signal observed

The interim analysis supported that IMU-838 is a safe oral medication in patients with UC up to the highest dose used (45 mg).

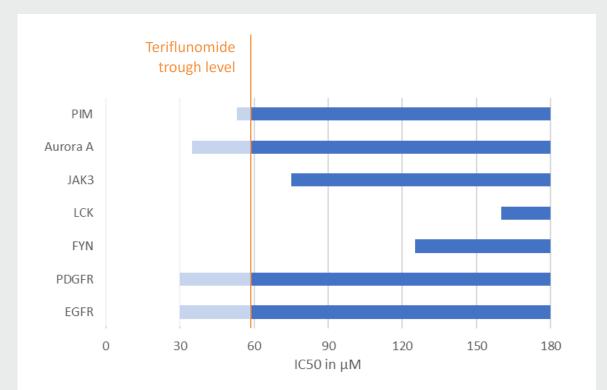

IMU-838 | Clinical Summary


ENTRANCE Study	Phase 1	Safety
IBD	Results	Summary
Comparison to		

Teriflunomide

Teriflunomide Has a Safety Profile Not Expected From Selective DHODH Inhibition

Adverse Event	Aubagio® 14 mg (n=1002)	Aubagio® 7 mg (n=1045)	Placebo (n=997)
Headache	16%	18%	15%
ALT increased*	15%	13%	9%
Diarrhea	14%	13%	8%
Alopecia ⁺	13%	10%	5%
Nausea	11%	8%	7%


Aubagio[®] (teriflunomide) Prescribing Information US FDA. Medical Review for teriflunomide. August 25, 2012

Off-Target Effects: Kinase Inhibition by Teriflunomide

Teriflunomide is not selective for DHODH, it also inhibits kinases such as PDGFR, Aurora A, FYN, LCK, JAK3, PIM and EGFR

Most common adverse events of EGFR inhibitors: skin disorders, diarrhea, and elevated liver enzymes. Rare cases of interstitial lung disease are also observed

Mean trough level for teriflunomide 7 mg was taken from Clinical Pharmacology Biopharmaceutics Review, Teriflunomide (FDA)

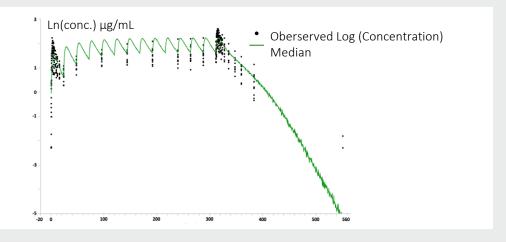
Mattar u. a., "Inhibition of the Epidermal Growth Factor Receptor Tyrosine Kinase Activity by Leflunomide". Xiulong Xu, Jikun Shen, Julian W Mall, Jonathan A Myers, Wanyun Huang, Leonard Blinder, Theodore J Saclarides, James W Williams, Anita S-F Chong, In vitro and in vivo antitumor activity of a novel immunomodulatory drug, leflunomide: Mechanisms of action, Biochemical Pharmacology, Volume 58, Issue 9, 1999, Pages 1405-1413, ISSN 0006-2952, https://doi.org/10.1016/S0006-2952(99)00228-2. Manna und Aggarwal, "Immunosuppressive Leflunomide Metabolite (A77 1726) Blocks TNF-Dependent Nuclear Factor-KB Activation and Gene Expression". Siemasko u. a., "Inhibition of JAK3 and STAT6 Tyrosine Phosphorylation by the Immunosuppressive Drug Leflunomide Leads to a Block in IgG1 Production". "Leflunomide Inhibits c-Myc Signaling and Impairs Myeloma Cell Growth

Ralf Buettner, Corey James Morales, Enrico Caserta, Domenico Viola, Joycelynne M. Palmer, Xiwei Wu, Nagarajan Vaidehi, Hongzhi Li, Tim Synold, Amrita Krishnan, Flavia Pichiorri, Michael Rosenzweig and Steven T. Rosen, "Leflunomide Inhibits c-Myc Signaling and Impairs Myeloma Cell Growth; Ralf Buettner, Corey James Morales, Enrico Caserta, Domenico Viola, Joycelynne M. Palmer, Xiwei Wu, Nagarajan Vaidehi, Hongzhi Li, Tim Synold, Amrita Krishnan, Flavia Pichiorri, Michael Rosenzweig and Steven T. Rosen"

IMU-838: Pharmacokinetic Profile Well Suited for Once Daily Dosing

Lacks need for accelerated elimination procedures known from teriflunomide

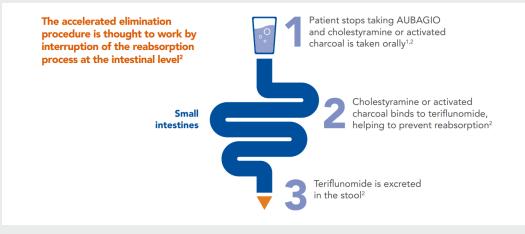
IMU-838


Half-life: 30 hours in humans

Accumulation factor: 2

Quick wash-out without need for elimination procedure

Teriflunomide


Half-life: 18-19 days in humans

Accumulation factor: 100

Accelerated elimination procedure for treatment discontinuations

Aubagio[®] (teriflunomide) Prescribing Information

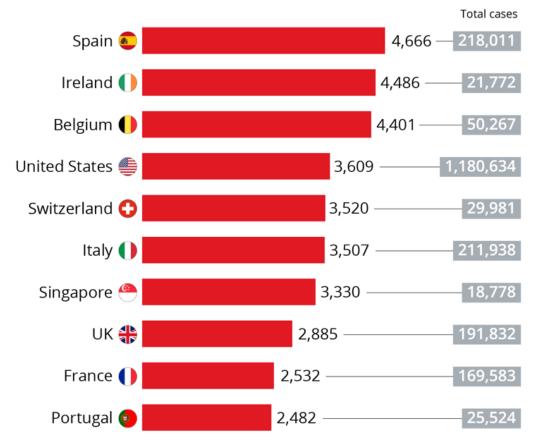
IMU-838 as a Potential Treatment Option for COVID-19

2

Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	

IMU-838 as a Potential Treatment Option for COVID-19

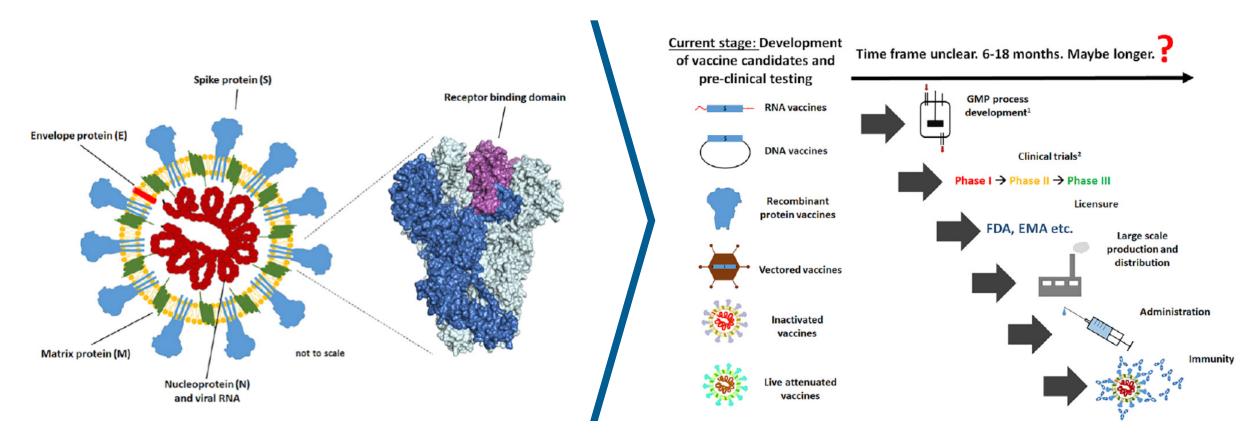
2


Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	

COVID-19 Cases per Million Inhabitants: A Comparison

Prevalence of COVID-19 per capita

Confirmed COVID-19 cases per one million population



* Of countries with a population over four million and with over five thousand confirmed cases. As of 07:30am CET on May 5, 2020. Based on 2018 population figures. Johns Hopkins University, World Bank

Is Vaccination Our Best Hope for the End of the Pandemic?

More than 70 vaccine candidates are in development around the world, with at least five in preliminary testing in people.

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020 Apr 14;52(4):583-589

The Waves of the "Spanish Flu"

The figure shows weekly combined influenza and pneumonia mortality in the United Kingdom, 1918–1919.

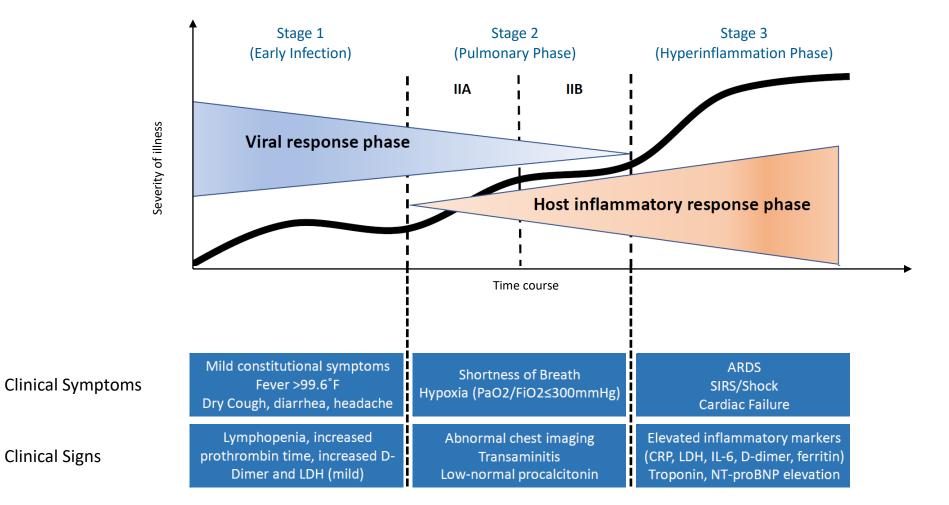
100 YEARS AFTER 'SPANISH FLU': IS THE WORLD READY FOR THE NEXT PANDEMIC? Published by Gary Finnegan on October 24th, 2018 https://www.vaccinestoday.eu/stories/100-years-spanish-flu-world-ready-next-pandemic/ Figure taken originally from Jeffery K. Taubenberger and David M. Morens, Emerging Infectious Disease, 2006

The Need for Effective Therapies for COVID-19

An effective vaccine could be more than a year away, however it cannot be guaranteed that a vaccine provides full immunity from the disease

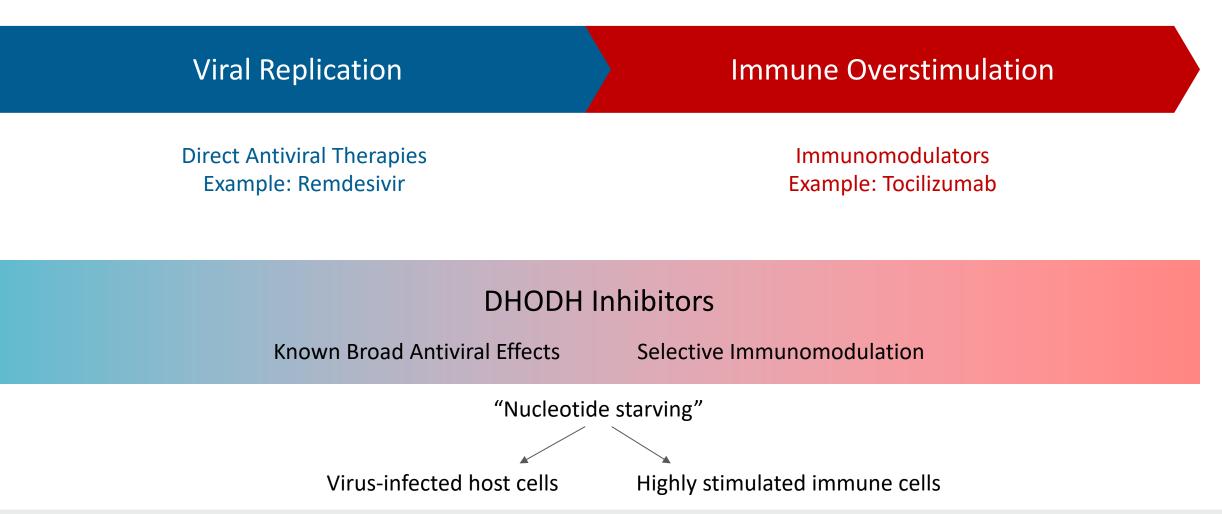
Even with an available vaccine, effective drug treatments and therapies help ease the strain on overwhelmed healthcare systems

Many patients with risk factors (such as cancer treatments, immunosuppressive treatments) are vulnerable and cannot get effective vaccinations



Make effective therapies available through stockpiling for future pandemics, in particular when mutated or novel viruses may emerge

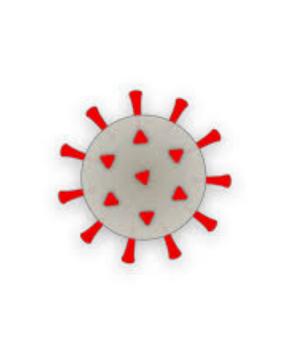
There is tremendous need for effective therapies to be available as soon as possible.


COVID-19: The Therapeutic Challenge

COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal Siddiqi H. and Mehra M. (2020)

Ó

Antiviral vs. Immunomodulatory Treatments



Revised Concept of Antiviral Combinations Using IMU-838 – Combination of Virus and Host Cell Targeting

Conventional antiviral therapies

Inhibit virus replication via viral targets

IMU-838 (DHODH inhibitor)

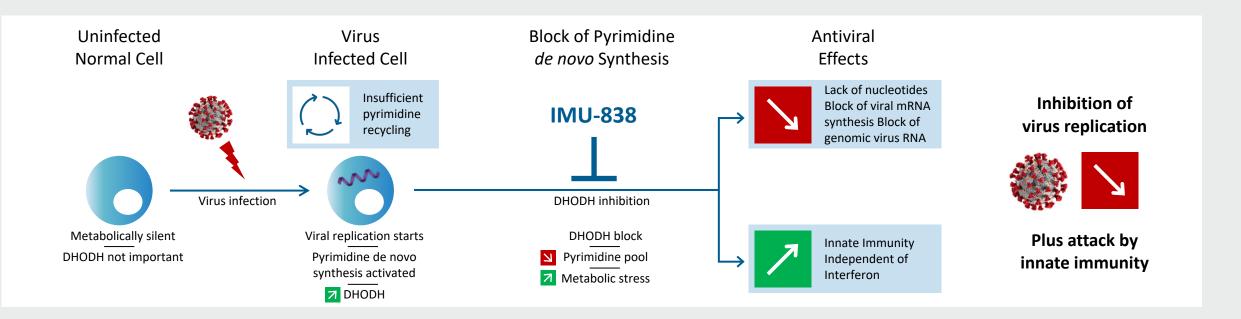
Inhibits virus replication via host cell targets

Potential synergistic effects in combination therapy

Xiong R, et al. bioRxiv. March 2020:2020.03.11

IMU-838 as a Potential Treatment Option for COVID-19

2


Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	

Summary of Rationale for IMU-838 in COVID-19

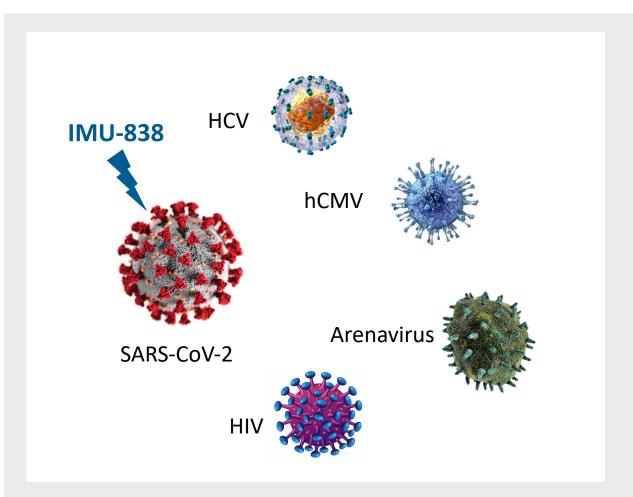
Dual mode of action: orally available DHODH inhibitor with both, antiviral and anti-inflammatory effects

Host-based mechanism: avoids dependence on specific viral proteins and, therefore, offers broad-spectrum antiviral activity

IMU-838 as a Potential Treatment Option for COVID-19

2

Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	


IMU-838: Activity Against SARS-CoV-2 and Other Viruses

IMU-838 is active against SARS-CoV-2

IMU-838 has shown broadspectrum antiviral activity against different pathogenic viruses with EC₅₀ values in single digit µM range

IMU-838: SARS-CoV-2 Preclinical Testing

Collaboration partners in Germany and the United States **Utah State University of Chicago** University Dr. Millis Dr. Julander Retrovirox, San Diego A549-ACE2 10² University of Würzburg SARS-CoV-2 Viral load inhibition (%) Dr. Bodem **University of Erlangen** 10¹-Dr. Marschall **Bundeswehr Institute of Microbiology**, Munich Dr. Bugert **University of Freiburg** 10 DMSO IMU-838 Drs. Ruzsics and Fuchs (10 µM)

→ IMU-838 demonstrated inhibition of SARS-CoV-2 replication

A549-ACE2 cells (human lung epithelial cells, overexpressing ACE2 receptor)

- Virus RNA reduction RT-qPCR
- EC_{99.9} ~10μM

Vero76 (monkey kidney)

- Cytopathic effect EC₅₀ 5.7 μM
- Virus Yield Reduction EC_{90} 7 μ M

VeroE4 cells (monkey kidney)

- Virus RNA reduction RT-qPCR
- EC₉₀ < 10 μM

Further testing ongoing in Huh7 (liver) and CaCo2 (colon) cells

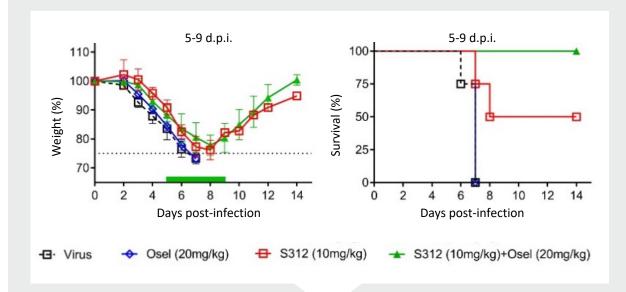
IMU-838: Triple Attack on COVID-19

IMU-838 attacks COVID-19 disease by three complementary mechanisms

1

2

Insufficient first immune response due to SARS-CoV-2 encoded interferon antagonists Induction of **innate immune response** by DHODH inhibition independent of interferon signaling


Excessive activation of adaptive immune response – "cytokine storm" Inhibition of "overreacting", cytokine high producing immune cells

Inhibition of virus replication by depletion of nucleotide pool

Third Party Research Shows Synergistic Effect on Survival of Using Antiviral Drug in Combination with DHODH Inhibitor

BALB/c mice were intranasal infected with 4000PFU of A/WSN/33 virus and then intraperitoneal injected (i.p.) with PBS, DHODH inhibitor S312 (2.5, 5, 10 mg/kg), Oseltamivir (20 mg/kg) and S312+Oseltamivir (10 mg/kg+20 mg/kg) once per day from D1-D14 respectively.

The *in vivo* efficacy of the DHODH inhibitor S312 was compared to oseltamivir in middle-to-late phase influenza A infection (WSN or 2009 pandemic H1N1). When mice were administered oseltamivir in middle-tolate phase, survival was 0% after 14 days. However, survival was 50% when treated with the DHODH inhibitor S312 alone and 100% when treated with combination therapy (S312+oseltamivir).

Xiong R, et al. bioRxiv. March 2020:2020.03.11

IMU-838 as a Potential Treatment Option for COVID-19

2

Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	

Potential Advantages of DHODH Inhibitors

 \rightarrow

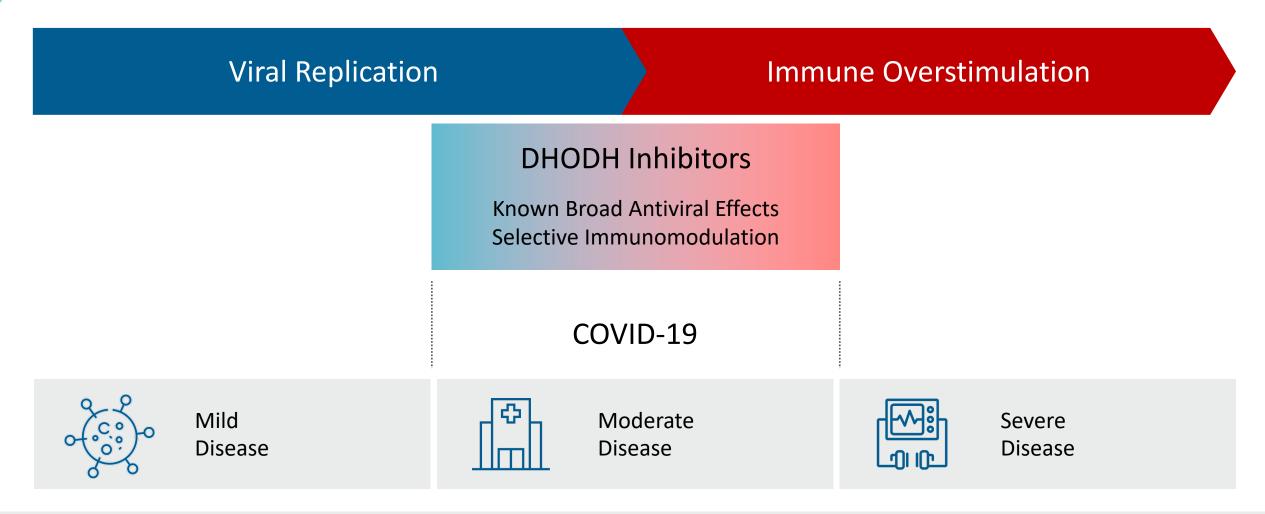
Targeting the host provides broad-spectrum antiviral activity

potential viral mutagenesis

May act directly on the virus replication in the infected cells and in addition induce innate immune response

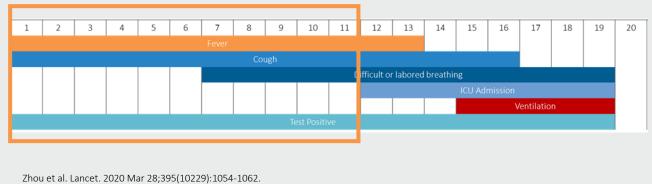
Blocking viral replication and independent of

 \rightarrow


Targeting virulence would specifically lead to benefit of more severe cases

 \rightarrow

DHODH inhibition is selective towards activated and infected cells and has no general antiproliferative or immunosuppressive effects

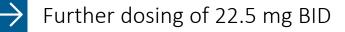

Antiviral vs. Immunomodulatory Treatments

Modified WHO Ordinal Scale for Clinical Status

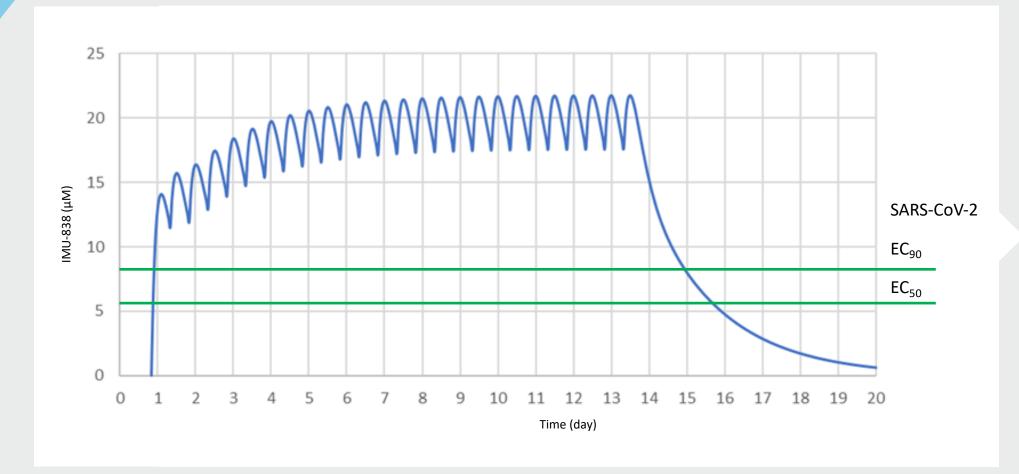
atient state	Descriptor	Score
Jninfected or no longer nfectious	No clinical or virological evidence of infection	0
Aild Disease	Ambulatory, virus-positive, no limitation of activities	1
	Ambulatory, virus-positive, limitation of activities	2
Ioderate Disease	Hospitalized, virus-positive, no oxygen therapy	3
	Hospitalized, virus-positive, oxygen by mask or nasal prongs	4
evere Disease	Hospitalized, virus-positive, non-invasive ventilation or high-flow oxygen	5
	Hospitalized, virus-positive, intubation and mechanical ventilation	6
	Hospitalized, virus-positive, ventilation plus additional organ support (pressors, RRT, ECMO)	7
Dead	Death	8

ECMO = extracorporeal membrane oxygenation, RRT = renal replacement therapy.

WHO R&D: Available from: https://www.who.int/blueprint/priority-diseases/keyaction/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf


Proposed Treatment Regimen of IMU-838 in COVID-19 Patients

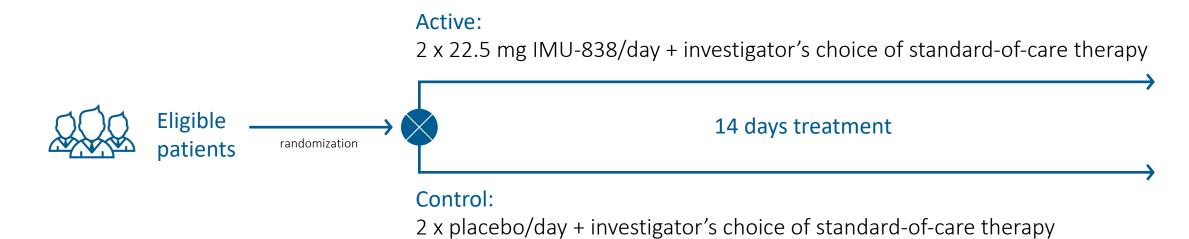
Treatment course of 14 days


Initial loading dose of 45mg

	Day	/ 0	Da	y 1	Days 2	2 to 12	Day	/ 13
Time	AM	PM	AM	PM	AM	PM	AM	PM
Number of tablets		2	1	1	1	1	1	1
Dose IMU-838		45 mg	22.5 mg					
		#	*	*	*	*	*	*

Day 0: Loading close of 45 mg IMU-838 once daily given on the evening of Day 0 * Day 1- Day 13: closing of 22.5 mg IMU-838 BID (twice daily)

Anticipated Pharmacokinetic Profile 22.5 mg BID 14-day Treatment in Phase 2 IMU-838 in COVID-19 Patients


Proposed dosing regimen ensures that therapeutic levels of IMU-838 are reached starting from first dose

Based on Population Pharmacokinetic Model for IMU-838 as described in the following publication: Muehler et al. Eur J Drug Metab Pharmacokinet. 2020 May 2. doi: 10.1007/s13318-020-00623-7

CALVID-1: Phase 2 Clinical Trial Design in COVID-19

Prospective, multicenter, randomized, placebo-controlled, double-blind phase 2 clinical trial

www.clinicaltrials.gov: NCT04379271

n = 230 patients

About 10-35 clinical sites in the United States and Europe

Coordinating Investigator: Dr. Neera Ahuja, Stanford University

CALVID-1: Study Population and Allowed Treatments

Study Population

Confirmed SARS-CoV-2 infection

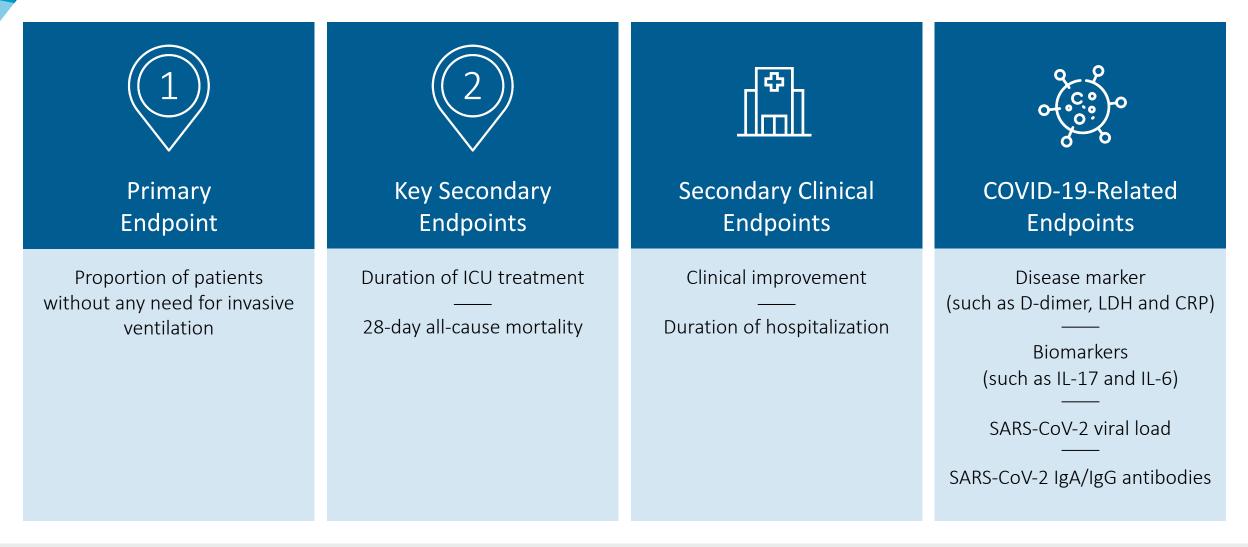
Patients with moderate COVID-19 disease and clinical symptoms, defined as WHO clinical status 3 & 4 (hospitalized, not on invasive ventilation)

Standard exclusions for pre-existing severe renal, liver and heart disease and certain biochemical parameters

×1/ + / | ×

Study Treatments

Assessment of IMU-838 versus Placebo on top of standard-of-care



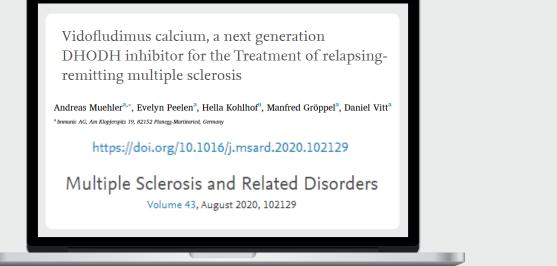
- No antiviral medication required in standard of care
- No hydroxychloroquine permitted (unless taken for indicated use)

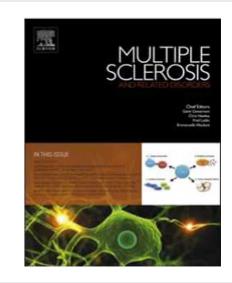
No fixed combination treatment for IMU-838

CALVID-1: Study Endpoints

IMU-838 as a Potential Treatment Option for COVID-19


2


Introduction	Mode of Action and Antiviral Effect	Preclinical Data
Clinical Development Program	Q&A COVID-19	


IMU-838

Development Program Multiple Sclerosis

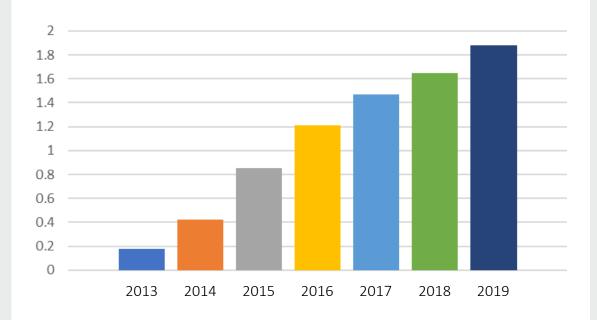
Publication of Profile of IMU-838 for Indication MS

Vidofludimus calcium, a next generation DHODH inhibitor for the Treatment of RRMS.

Muehler A et al.

The investigations highlighted that the desired selective immunomodulatory properties can be separated from general antiproliferative effects seen and related adverse events in first-generation DHODH inhibitors.

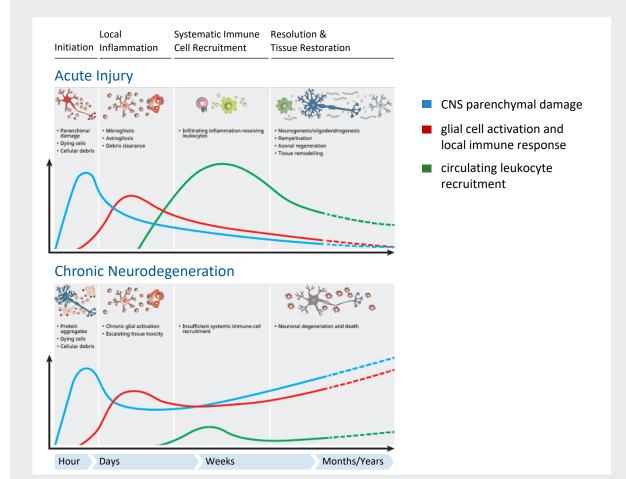
Based on data obtained from a series of pre-clinical as well as phase 1 and phase 2 studies, IMU–838 is a promising next-generation candidate for the oral treatment of RRMS. However, this will need to be confirmed in the currently ongoing Phase 2 study in RRMS patients.


Teriflunomide (Aubagio[®])

US Prescribing Information

- Aubagio[®] is indicated for the treatment of relapsing forms of MS, to include clinically isolated syndrome, RRMS, and active secondary progressive disease, in adults.
- The recommended dose of Aubagio[®] is 7 mg or 14 mg orally once daily. Aubagio[®] can be taken with or without food.

Global Sales Aubagio[®] in MS Worldwide Sales (in € B)


Concept of Inflammatory Mechanisms in RRMS

Relapse-Related Inflammatory Mechanisms

Influencing it may mainly be visible as decrease in annualized relapse rate (ARR)

2 Relapse-Independent Inflammatory Mechanism

Influencing it may mainly be visible as delayed neurodegeneration, e.g. as delayed brain atrophy or improved disability progression

Picture taken from: https://www.cellsignal.com/contents/research/neuroinflammation-in-neurodegenerative-diseases/role-of-neuroinflammation

Robert Fox MD, FAAN

→ Staff Neurologist, Mellen Center for Multiple Sclerosis
→ Vice-Chair for Research, Neurological Institute
Cleveland Clinic, Ohio

IMU-838 | Clinical Development Program

Phase 2 RRMS	Phase 2 UC	Phase 2a PSC
Q&A IMU-838		

Impact of COVID-19 on Ongoing Clinical Programs for IMU-838

Patients with chronic diseases involving the immune system are usually considered higher risk patients for infections

 Data indicate that MS and UC patients do not have particularly difficult disease courses

No formal stop of enrollment for any study using IMU-838

- However, enrollment has been slow for last months
- Impact of long-term timing on studies can only be assessed with opening of healthcare structures and societies in different countries

Measures were taken to ensure that all patients already enrolled are able to continue

Currently only minimal impact for enrolled patients and ongoing studies

IMU-838Clinical DevelopmentProgram

5

Phase 2 RRMS	Phase 2 UC	Phase 2a PSC
Q&A IMU-838		

EMPhASIS: Phase 2 Study Overview in RRMS

Coordinating Investigator

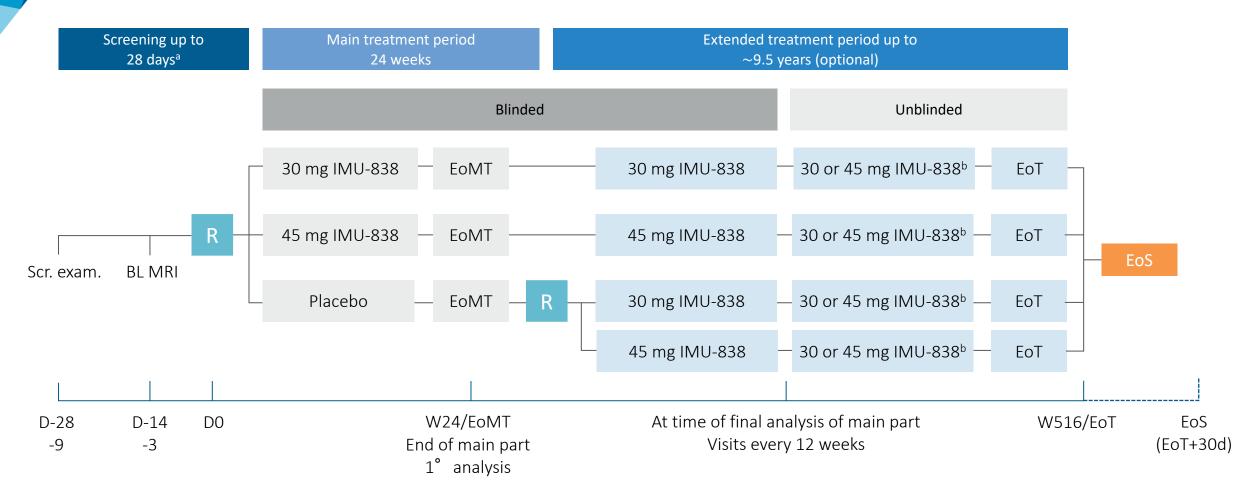
Robert Fox, MD (Cleveland Clinic)

Population: RRMS With Relevant Disease Activity

- Male or female ($18 \ge age \le 55$)
- RRMS diagnosis (Revised McDonald criteria 2017)
- Evidence of disease activity based on relapse and MRI criteria
- Baseline EDSS: 0 ≤ EDSS ≥4.0

Main Treatment Period

- MRI endpoint new combined unique active lesions
- Parallel group design with placebo control
- Overall blinded treatment period 24 weeks


MRI every six weeks www.clinicaltrials.gov: NCT03846219

- Up to 9.5 years
- Extension study for obtaining long-term safety

EMPhASIS: Phase 2 Trial Design in RRMS

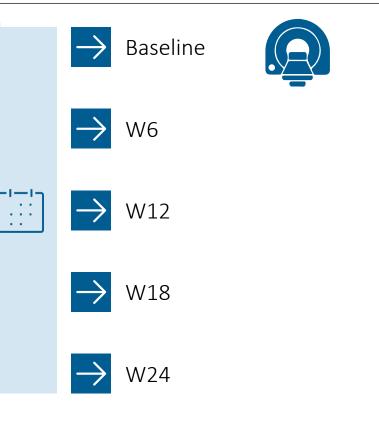
a) Can be interrupted/extended, if the baseline MRI must be repeated due to poor quality (to be done as soon as possible). If results of the central MRI assessment are not available in time for randomization, the screening period can be extended by up to 7 days, if needed. b) After unblinding of the main treatment period, the investigator can decide with the patient if and at which dose the treatment will be continued.

BL = baseline; exam. = examination; D = day; EoMT = end of main treatment; EoS = end of trial; EoT = end of treatment; MRI magnetic resonance imaging; R = randomization; Scr. = screening; W = week

EMPhASIS: Schedule of MRI Examinations

Primary Endpoint

To evaluate the efficacy of 45 mg/day IMU-838 as compared to placebo based on the cumulative number of new combined unique active lesions at Week 24



Combined Unique Active (CUA) Lesions

Sum of the number of all new Gd-enhanced (Gd+) lesions on T1-weighted magnetic resonance imaging (MRI) and the number of all new or substantially enlarged lesions on T2-weighted MRI (non-enhancing on T1-weighted MRI), avoiding double counting

All MRI Scans Will be Assessed Centrally by an Independent MRI Reading Center Only

EMPhASIS: Secondary Endpoints

MRI endpoints

- T2- and T1-lesion load
- \rightarrow T1-lesion load at Weeks 6, 12, 18 and 24 compared to Baseline
- \rightarrow Number of new Gd+, T2, and T1 lesions
- \rightarrow Proportion of patients without new Gd+ lesions over 24 weeks

Relapse-related clinical endpoints

- \rightarrow Mean annualized relapse rate
- \rightarrow Proportion of relapse-free patients

Other clinical endpoints

- \rightarrow Mean change in the EDSS as compared to Baseline
- \rightarrow Proportion of patients with EDSS progression

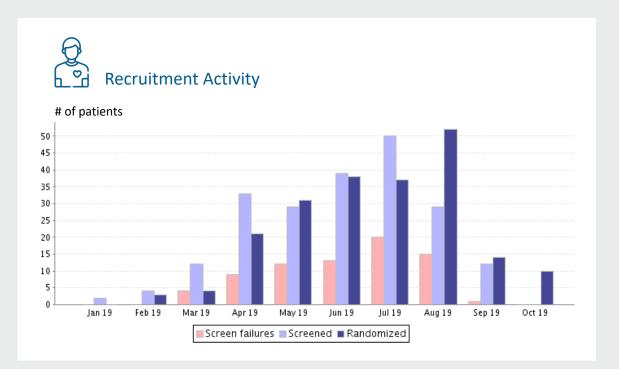
Safety endpoints

Proportion of patients who experienced at least one of the following AEs:

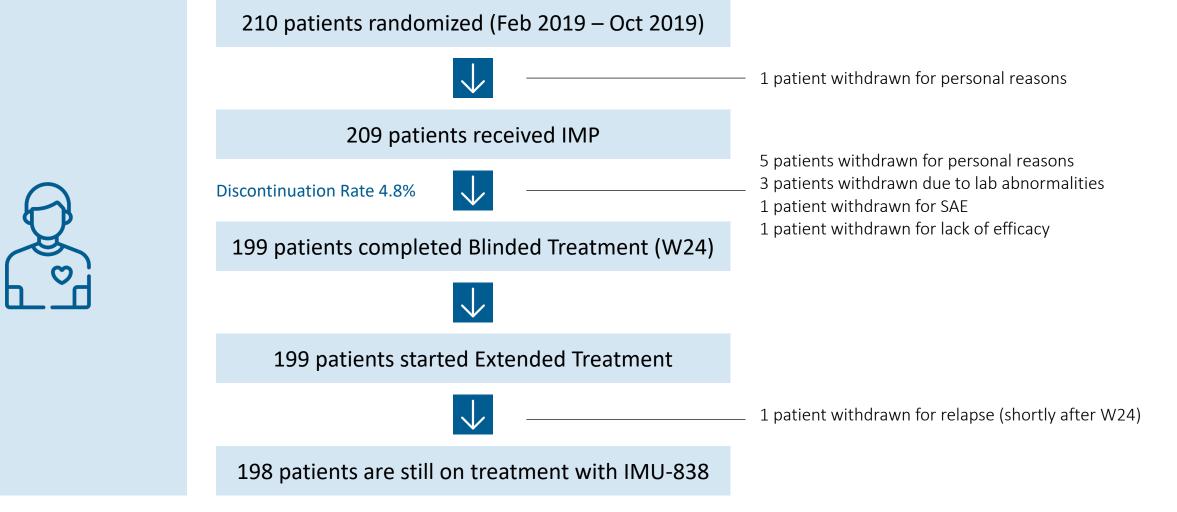
- \rightarrow Neutropenia Lymphopenia
- \rightarrow Diarrhea
- \rightarrow Alopecia
- Hemorrhage
- LFT abnormalities

Biomarker

ightarrow Neurofilament light chain in serum


EMPhASIS: Enrollment Completed

As of October 10, 2019 enrollment is completed


Study has enrolled 210 patients in four countries (Ukraine, Bulgaria, Romania, Poland)

Centralized blinded MRI assessment done by Siena Imaging

EMPhASIS: Enrollment and Discontinuations (Blinded)

As of April 27, 2020

EMPhASIS: Current Study Status

No patient left in blinded treatment phase (initial 24-week period)

Study is still completely blinded

- Currently monitoring is being performed in anticipation of database lock
- \checkmark

Top-line unblinded data is expected in Q3/2020

Phase 3 planning is ongoing

- Scientific advice meetings with FDA and European agencies have been conducted
- Several international expert meetings with clinical and statistical experts
- Steering Committee: chaired by Fred Lublin (Mount Sinai, New York)

Immunic will share phase 3 plans later this year after release of phase 2 data

IMU-838: Preparation of Phase 3 Readiness

Availability of large quantities of active pharmaceutical ingredient in Q2/2020

> New manufacturing process (roller compactor) that allows large scale production has already been developed

Including process development for new formulation fitted to new manufacturing process

Short phase 1 bioequivalence study will be started soon

IMU-838: Potential Positioning in RRMS

1

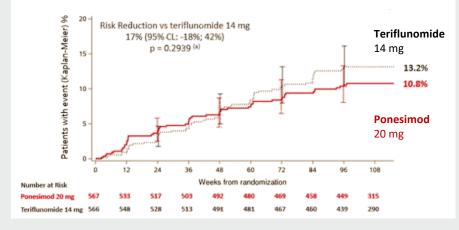
Unique properties known from DHODH inhibitors regarding disability progression Suggestion of sustained activity even after multiple prior DMT

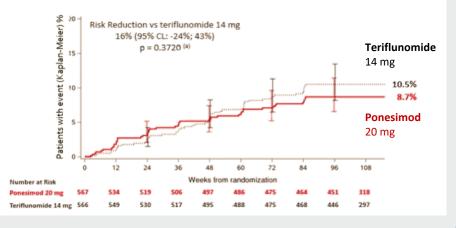
Known protection
against John
Cunningham virus
reactivations and
resulting PML

Pharmacokinetic profile (short blood half-life) allowing for convenient treatment interruptions and no need for accelerated washout procedures 5

Unique safety profile of IMU-838 may open the opportunity of deescalation following anti-B-cell biologics

1. Mode of Action is Highly Competitive for **Slowing Disability Progression**


DHODH inhibitors are at least as effective as S1Ps on Disability Progression


Example

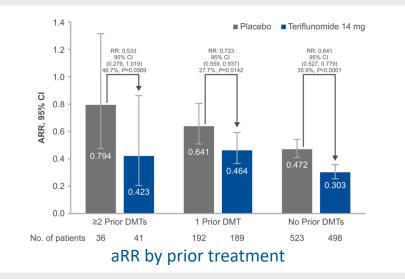
Phase 3 trial of Ponesimod vs. Teriflunomide

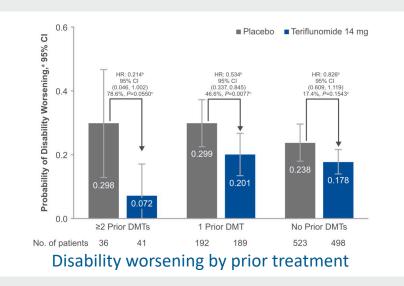
Time to 12-week Confirmed Disability Accumulation Full Analysis Set

Time to 24-week Confirmed Disability Accumulation Full Analysis Set

Teriflunomide showed overall no difference in 12-week or 24-week confirmed disability progression (an endpoint that is actually biased against teriflunomide in this trial given that sequelae from relapses are known to contribute to disability burden).

Immunic


Kappos L et al. ECTRIMS 2019; Stockholm. Abstract 93


2. Treatment Effects Maintained for Patients Discontinuing other DMTs

Teriflunomide provides strong activity even after use of multiple prior DMTs

Post-hoc analysis on ARR & 12wCDP for TER14 from the pooled TEMSO and TOWER datasets (2,251 patients)

Teriflunomide showed no less treatment effect in patients with more prior therapies (which may also point to the necessary predominance of neuroprotective effects for patients with more prior DMT).

Freedman M et al. Mult Scler. 2018; 24:535–9 DMT = disease-modifying drugs. ARR = annualized relapse rate

3. Teriflunomide as DHODH Inhibitor Shows Low Risk Regarding PML Among Available MS Therapies

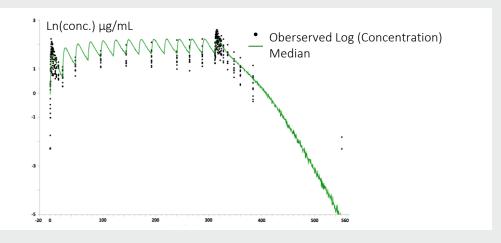
Teriflunomide	Most Disease Modifying Treatments in MS (in particular when with prior immunomodulator use)	Natalizumab	
None	Some	Higher	

Chahin S and Berger JR. J Neurovirol. 2015;21;623-631 PML = progressive multifocal leukoencephalopathy, virus reactivation of JC virus in the brain

4. Pharmacokinetic Profile of IMU-838 is Well Suited for Once Daily Dosing

Lacks need for accelerated elimination procedures known from teriflunomide

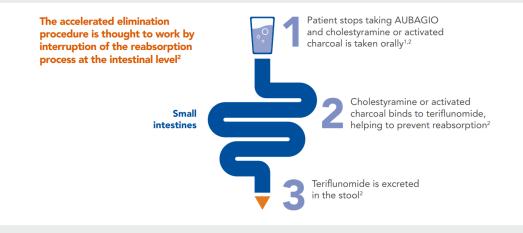
IMU-838


Half-life: 30 hours in humans

Accumulation factor: 2

Quick wash-out without need for elimination procedure

Teriflunomide


Half-life: 18-19 days in humans

Accumulation factor: 100

Accelerated elimination procedure for treatment discontinuations

5. IMU-838 Has Shown a **Favorable Safety and Tolerability Profile** Adverse Events in COMPONENT Trial (RA patients)

AE of interest: Diarrhea, Alopecia, Neutropenia

MedDRA SOC	MedDRA Preferred Term	Vidofludimus n=122		Placebo n=119		Total n=241	
		n	%	n	%	n	%
Gastrointestinal Disorders	Diarrhea	7	5.7	7	5.9	14	5.8
Skin and Subcutaneous Tissue Disorders	Alopecia	1	0.8	0	0.0	1	0.4
Blood and Lymphatic System Disorders	White Blood Cell Disorders	0	0.0	1	0.8	1	0.4
Investigations	Neutrophil Count Abnormal	0	0.0	1	0.8	1	0.4

MedDRA Medical Dictionary for Regulatory Activities, SOC system organ class, N number of patients Muehler A et al., Drugs in R&D, available at: https://link.springer.com/article/10.1007/s40268-019-00286-z RA: Rheumatoid Arthritis

IMU-838: Target Profile in RRMS (1)

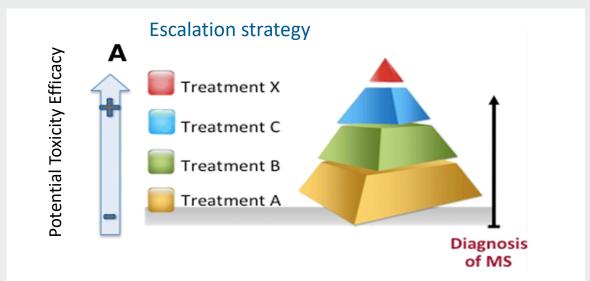
IMU-838 is targeted to be the most safe and convenient oral drug in RRMS

- Convenient safety profile without disturbing social activities
- Absent PML risk
- Long treatment duration through less risk for discontinuation, high patient compliance

- Easy on- and off-dosing
- Few monitoring requirements for treating neurologists
- No black box warning for hepatotoxicity

IMU-838: Target Profile in RRMS (2)

IMU-838 is targeted to be the treatment of choice as baseline drug for early RRMS patients


Escalation therapy consists of an early start with first line therapies switching to second line drugs only when MS disease activity is high despite treatment

Optimal first line therapies: oral, convenient to take, good safety profile

- Current pandemic situation highlights advantages of antiviral effects for patients
- "Oral, small molecules are seeing the fastest growth in the market due to their increased patient convenience"*

Safety profile of IMU-838, combined with the antiviral properties of an DHODH inhibitor may potentially open possibility of sequential treatment with biologics

IMU-838 | Clinical Development Program

Phase 2 RRMS	Phase 2 UC	Phase 2a PSC
Q&A IMU-838		

CALDOSE-1: Phase 2 Study Overview in UC

Coordinating Investigator

Dr. Geert d'Haens (AMC Amsterdam)

Population: UC With Relevant Disease Activity

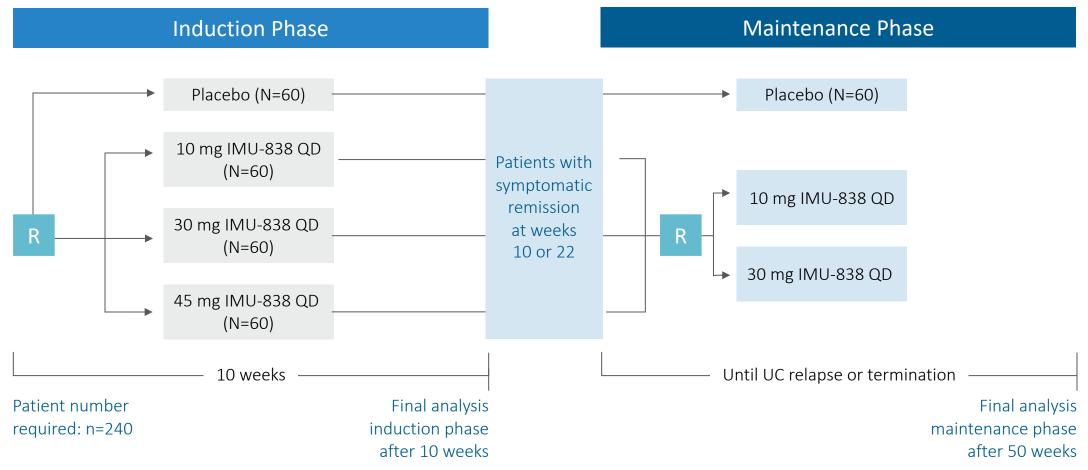
- Male and female patients, aged 18 80 years
- Previous treatment failure with immunomodulators, steroids or biologicals
- Active symptoms defined as a Mayo stool frequency score of ≥2 and a modified Mayo endoscopy subscore of ≥2 at the screening flexible sigmoidoscopy (independent central reader)
 www.clinicaltrials.gov: NCT03341962

10 Weeks

Maintenance Period

Up to Week 50

- Up to 9 years
- Extension study for obtaining long-term safety


CALDOSE-1: Clinical Phase 2 in UC Ongoing

Currently more than Overall number of patients: 65 active sites in 9 countries USA, Western, Active IND 240 Central and Eastern Europe in the United States Timelines Primary endpoint . . . Study started in April 2018 Proportion of patients with symptomatic remission and Currently estimated to deliver topendoscopic healing at week 10 line data at the end of 2021

www.clinicaltrials.gov: NCT03341962

CALDOSE-1: General Phase 2 Trial Design in UC

CALDOSE-1: Interim Analysis Established Potentially Broad Effective Dose Range (Performed August 2019)

Performed by an unblinded data review committee (DRC) Analysis based on all available clinical, endoscopic, biomarker, PD, and safety data

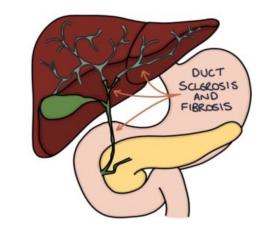
Potentially broad effective dose range in UC patients

Doses of 10-45 mg may be effective in UC

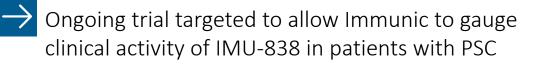
Interim analysis confirmed the good safety profile

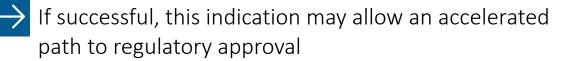
- No intolerable dose identified
- No safety signal observed

The interim analysis supported that IMU-838 is a safe oral medication in patients with UC with a broad therapeutic index.


IMU-838Clinical DevelopmentProgram

Phase 2 RRMS	Phase 2 UC	Phase 2a PSC
Q&A IMU-838		


Orphan Disease Primary Sclerosing Cholangitis (PSC)



Rare progressive liver disease without approved pharmaceutical treatments

IMU-838: Phase 2 Proof-of-Concept Study in PSC

Principal Investigator

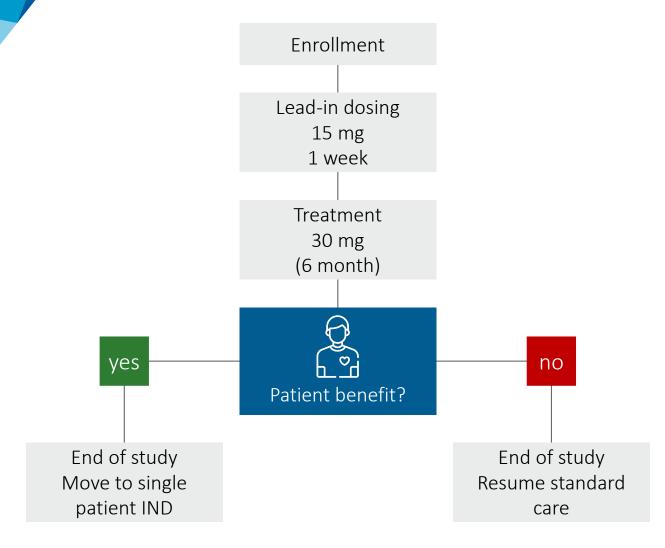
Elizabeth Carey, MD, Mayo Clinic

Study Started in August 2019

Currently about half of the patients enrolled

Investigator-Sponsored Trial in Patients with PSC

- Single-arm, open-label, exploratory study planning to enroll 30 patients, aged 18 to 75 years
- Conducted at two Mayo Clinic sites in Arizona and Minnesota
- Supported by NIH grant
- Immunic provides the study medication to clinical sites
- Dosing: 30 mg IMU-838 qd for up to six months
- Primary endpoint: change in serum alkaline phosphatase (ALP) at six months compared to baseline



Expected Results: End of 2020

www.clinicaltrials.gov: NCT03722576

Study Flow Chart – IISR using IMU-838 in PSC Patients

Inclusion Criteria

Male or female subject age 18-75 years

Diagnosis of PSC consistent with the guidelines published by the AASLD.

All subjects must have an elevated serum ALP of at least 1.5 times upper limit of normal (ULN) at baseline plus cholangiographic evidence of PSC (MRI, endoscopic retrograde cholangiography, or direct cholangiography).

IMU-838 | Clinical Development Program

5

Phase 2 RRMS	Phase 2 UC	Phase 2a PSC
Q&A IMU-838		

IMU-935

Positioning and Ongoing Phase 1 Program

Psoriasis

Q&A IMU-935

Mode of Action

Autoimmune Diseases and IMU-935

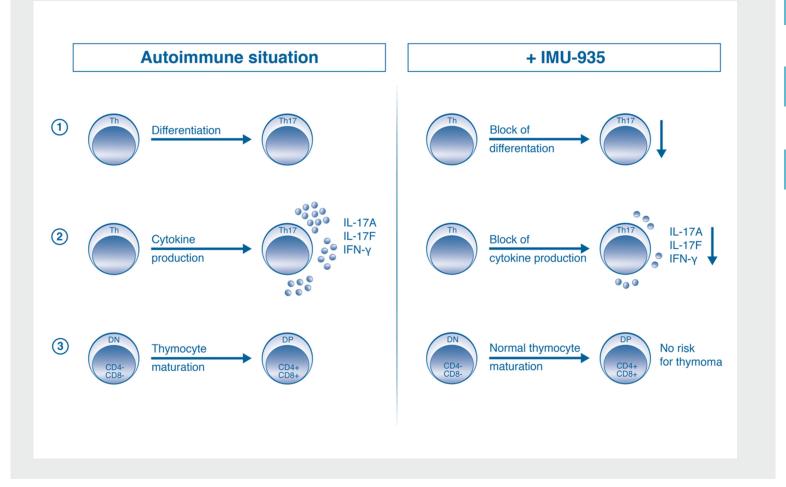
IL-17 in Autoimmune Diseases

- Autoimmune diseases are frequent diseases affecting millions of patients worldwide^[1]
- Th17/IL-17/RORγt axis is important in auto immunity related diseases^[2]
- Antibodies targeting this axis successfully demonstrated this concept but bear the disadvantage of being a non-oral drug^[2]

- Develop an orally available and potent IL-17 inhibitor for the safe and efficacious treatment of autoimmune diseases
- Small molecule inhibitor of RORγt functions in autoimmune disease state without affecting physiological functions of RORγt

Rose, Noel R. American journal of epidemiology 2016; 183.5: 403-406
Fasching, Patrizia, et al. Molecules 2017 22.1: 134

IMU-935

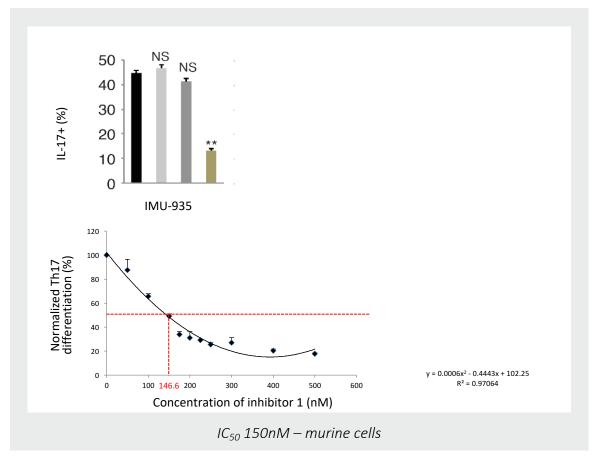

Positioning and Ongoing Phase 1 Program

Psoriasis

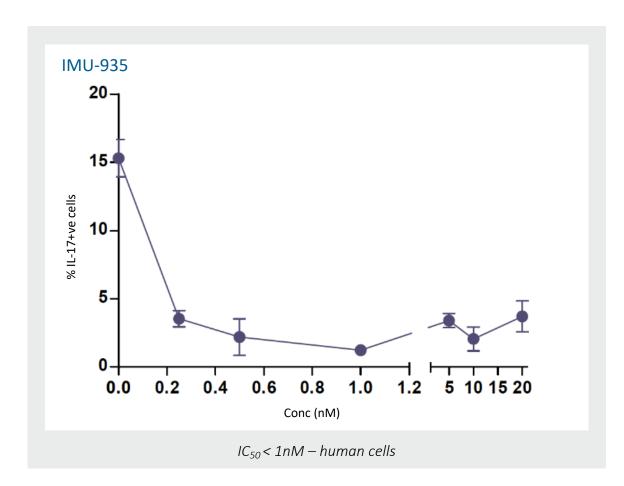
Q&A IMU-935

Mode of Action

IMU-935: Main Functions of RORγt


The differentiation towards Th17 cells is inhibited by IMU-935

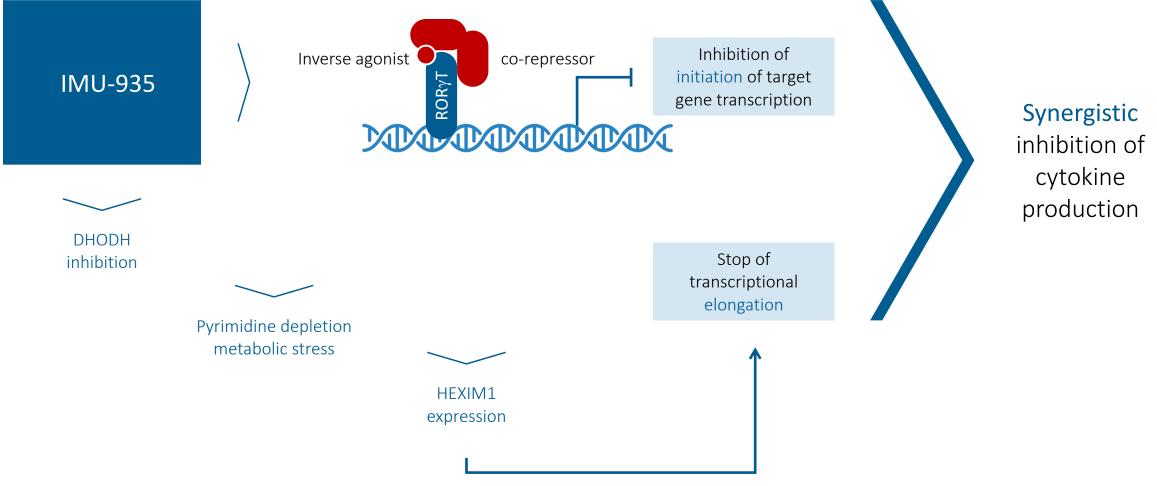
- The production of IL-17A and IL-17F is inhibited by IMU-935
- The physiological maturation of T-cells within the thymus is not affected by IMU-935



Inhibition of Th17 Differentiation

Th17 differentiation – murine primary thymocytes

Th17 differentiation – human T-ALL cells



Block of differentation

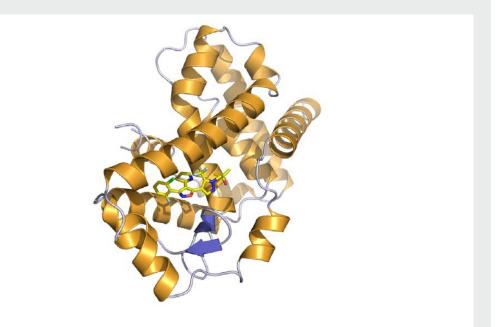
THERAPEUTICS

Unique: Synergism between RORyt and DHODH

Rutz et al., Catokine & Growth Factor Review, 2016 Adapted from Tan et al., Mol. Cell, 2016

102 | © Immunic, Inc. | 19.05.2020

Cytokine Inhibition in Low nM Range

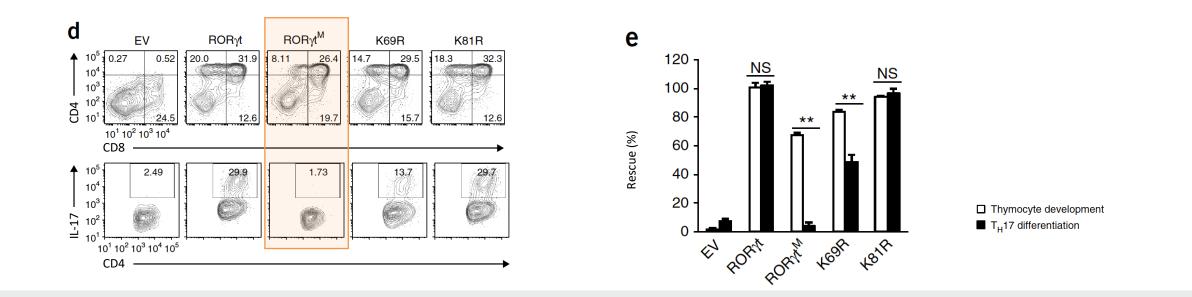

Effect of the development compound IM105935 (IMU-935) in stimulated human PBMCs

Inhibition of ROR γ (20 nM) and DHODH (240 nM) leads to synergistical inhibition of cytokines with IC₅₀ of 3-5 nM in stimulated human lymphocytes

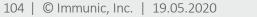
	IC ₅₀ (μM)
IL-17A	0.005
IL-17F	0.004
IFNγ	0.003
IL-1a and b	no inhibition
IL-4,5,6,8	no inhibition
RORγ (MST)	0.024
RORγ (cellular, reporter assay)	0.020
DHODH	0.240
Th17 differentiation	< 1 nM

Read-out: effect on cytokine production after 48 hours in PBMCs

Resolution 2.6 A of a closely related derivative compound binds to hydroxycholesterol binding site of $ROR\gamma$



Th17 Differentiation vs. Thymocyte Development

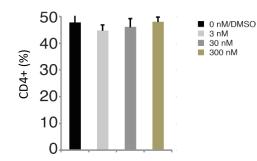

nature immunology

"A two-amino-acid substitution in the transcription factor RORγt disrupts its function in Th17 differentation but not in the thymocyte development"

Zhiheng He^{1,5}, Jian Ma^{1,5}, Ruiqing Wang^{1,2}, Jing Zhang^{1,2}, Zhaofeng Huang³, Fei Wang¹, Subha Sen¹, Ellen V Rothenberg^{4,ID} & Zuoming Sun^{1, ID}

He et al. 2017

IMU-935 Maintains Normal Thymocyte Maturation and Retains Basal Activity of RORγt

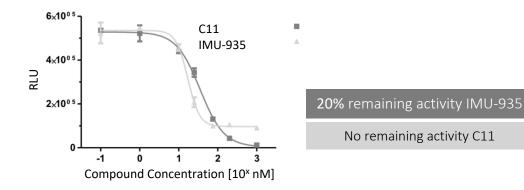


Method:

Sorted murine DN thymocytes were cultured on OP9-DL4 fibroblasts with mouse IL-7 for 72 hours and treated in parallel with IMU-935

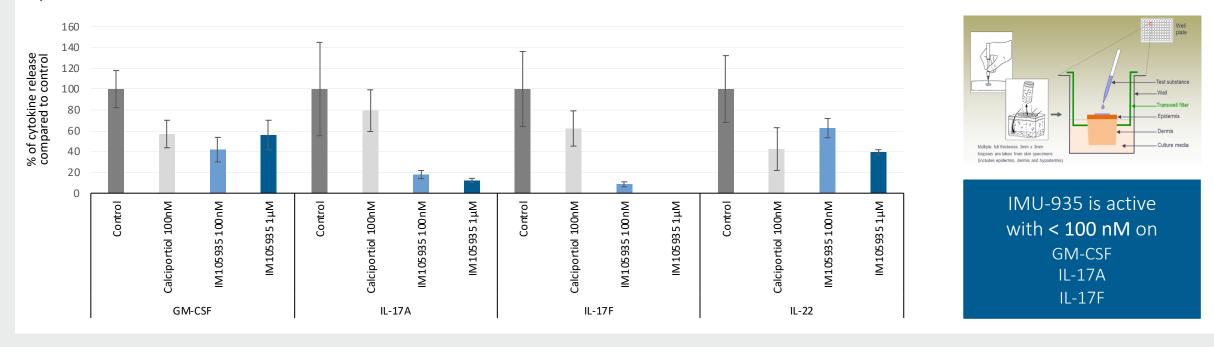
Result:

IMU-935 allows normal thymocyte maturation from DN towards matured CD4+ thymocytes (CD4+ and CD4+/CD8+)


Method:

Cellular reporter assay for RORyt activity with LBD of RORy fused to GAL4 reporter from Indigo was used

Result:


Approximately 20% remaining basal activity of RORγt by IMU-935 at highest dose, whereas comparator molecule showed full inhibition

IMU-935 Potently Inhibited Cytokine Release in *Ex Vivo* Stimulated Human Skin Punches

Cytokine inhibition in inflamed human skin model

Method:

Skin punches from human healthy volunteers were *ex vivo* pretreated with IMU-935 for 24 hours and then challenged with a pro-inflammatory cytokine cocktail for another 24 hours.

Result:

IMU-935 demonstrated a strong and dose dependent inhibition of GM-CSF, IL-17A, IL-17F and IL-22.

IMU-935: Efficacy in 6 Day IMQ Induced IL-17 Model

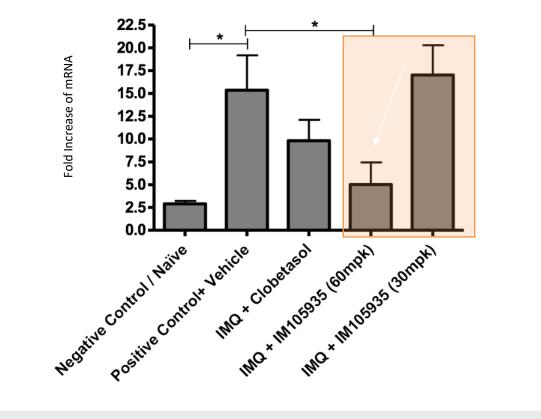
Activity of IMU-935 on IL-17F expression in skin was tested in an imiquimod induced mouse model

Topical induction of inflammation with imiquimod

Oral application of IMU-935

Results

Systemic exposure leads to dose dependent inhibition of IL-17F mRNA expression *in vivo* in the skin



IMU-935 was more potent in IL- 17F suppression than the corticosteroid control Clobetasol

Reduction of histological score on ear and skin

Skin IL-17F mRNA expression

IMU-935: Preclinical Summary

Highly selective for ROR γ (and DHODH)

No other nuclear receptors, kinases, 44 safety panel

Very potent on human Th17 cells and related cytokines

Th17 differentiation inhibition - < 1 nM

IL-17/IFN γ secretion – IC₅₀ 3-5 nM

No impairment of thymocyte maturation – no risk for thymoma anticipated

Activity demonstrated in animal models

Psoriasis/IL-17 models

- Ex vivo human skin inflammation < 100 nM
- Repression of IL-17 expression in IMQ induced murine model

DSS Colitis in therapeutic setting

Positioning and Ongoing Phase 1 Program

Psoriasis

Q&A IMU-935

Mode of Action

IMU-935: Phase 1 Study Performed in Australia

Performed by Immunic subsidiary in Australia Streamlined process for regulatory approval No central national regulatory agency approval Phase 1 study to be approved by Ethics Committee Availability of commercial Ethics Committees

Availability of experienced early phase CROs and phase 1 units

CMAX phase 1 Unit (Adelaide/SA)

Avance Clinical CRO (Adelaide/SA)

 \rightarrow

FPI phase 1 for IMU-935: September 2019

IMU-935: Phase 1 Study Performed in Three Parts

PART A

Evaluation of single ascending doses (SAD)

Healthy volunteers randomized to receive single dose IMU-935 or placebo

Five cohorts already completed

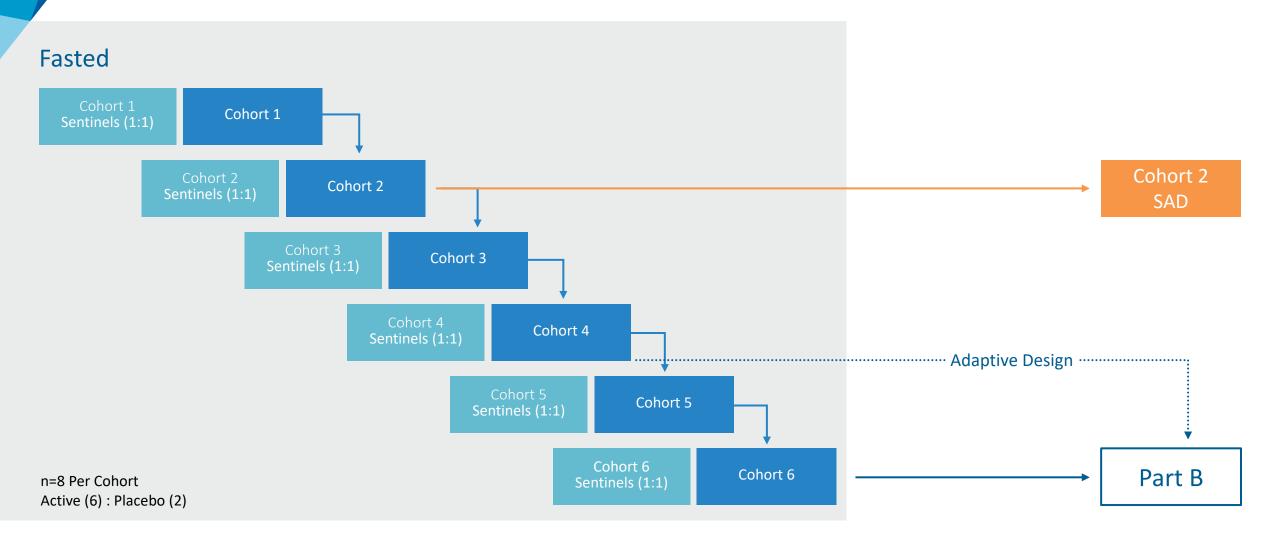
Safety Monitoring Committee recommended escalation to next dose group, but clinical trials in normal volunteers were then temporarily stopped in Australia due to COVID-19

PART **B**

Evaluation of multiple ascending doses (MAD)

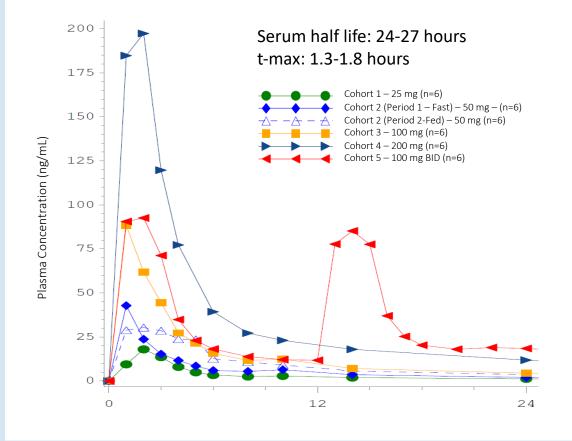
Healthy volunteers randomized to receive 14-day treatment of either IMU-935 or placebo

Expected to start Q3/2020, depending on COVID-19 situation


PART C

Evaluation of moderate-to-severe psoriasis patients receiving 28-day treatment of either IMU-935 or placebo

Expected to start H2/2020, depending on completion of Part B

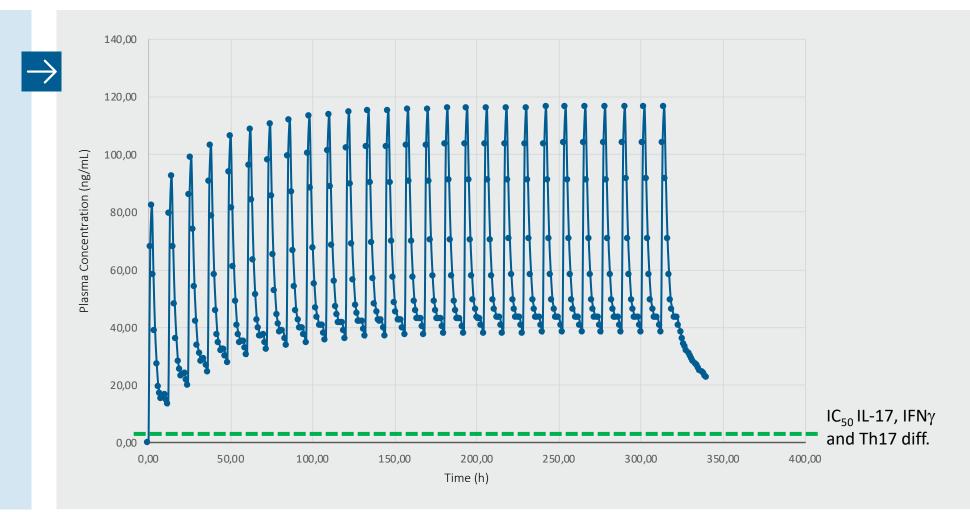


IMU-935: Phase 1 Design of Part A (SAD) Adaptive Transition to Part B (MAD)

IMU-935: Pharmacokinetic Results of Single Ascending Dose Cohorts 1-5 Predictable Dose-Linear Pharmacokinetics

Average pharmacokinetic variables

Dose	C-max ng/mL	T-max (hours)	AUC-24h (h* ng/mL)
25 mg	22.8	1.83	91.9
50 mg (fast)	49.6	1.50	176
50 mg (fed)	46.5	2.67	260
100 mg	95.7	1.33	399
200 mg	199	1.83	1000



Preliminary data

IMU-935: Pharmacokinetic Modeling of Multiple Dose

Prediction of multiple dose pharmacokinetics (75 mg IMU-935 BID)

> Estimated accumulation factor for multiple dosing 1.22

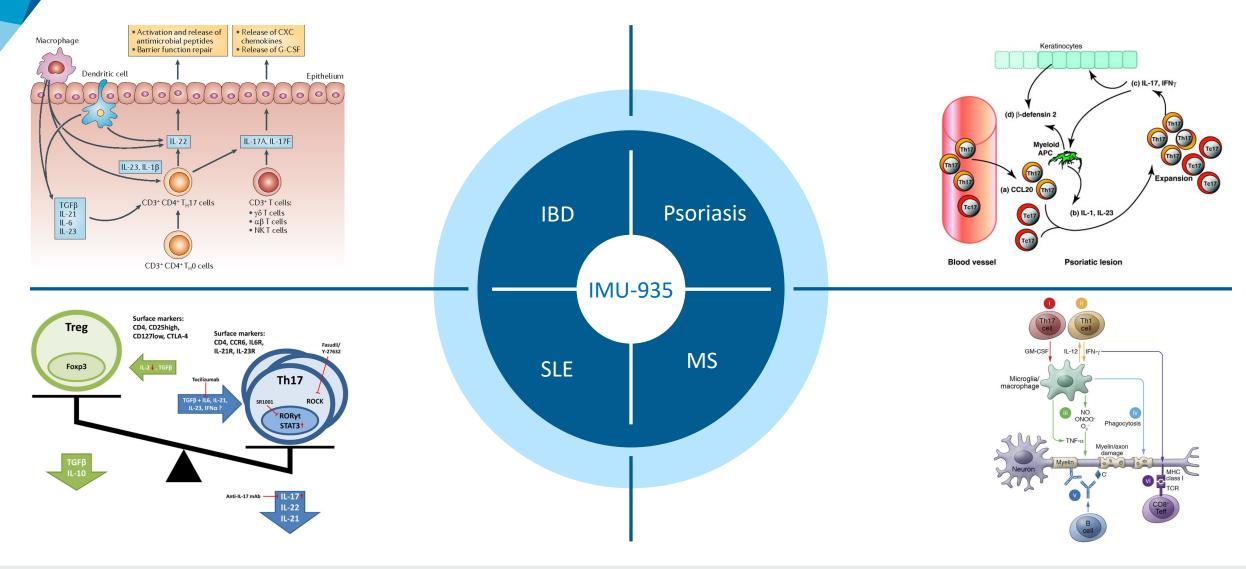
IMU-935: Safety Profile is Unremarkable

Number of subjects with	IMU (25	ort 1 -935 mg) =8)	IMU Fa (50	ort 2 -935 ist mg) =8)	IMU Fe (50	ort 2 -935 ed mg) =8)	Coho IMU (100 (n=	-935 mg)	IMU (200	ort 4 -935) mg) =8)		
	n	%	n	%	n	%	n	%	n	%	n	%
TEAEs	8	100	6	75	6	75	7	88	7	88	7	88
IMU-935 related TEAEs	3	38	3	38	3	38	5	63	4	50	5	63
Moderate or severe TEAEs	4	50	2	25	1	13	3	38	2	25	1	13
IMU-935 related, moderate or severe TEAEs	1	13	1	13			1	13				
SAEs												

Safety profile is still blinded!

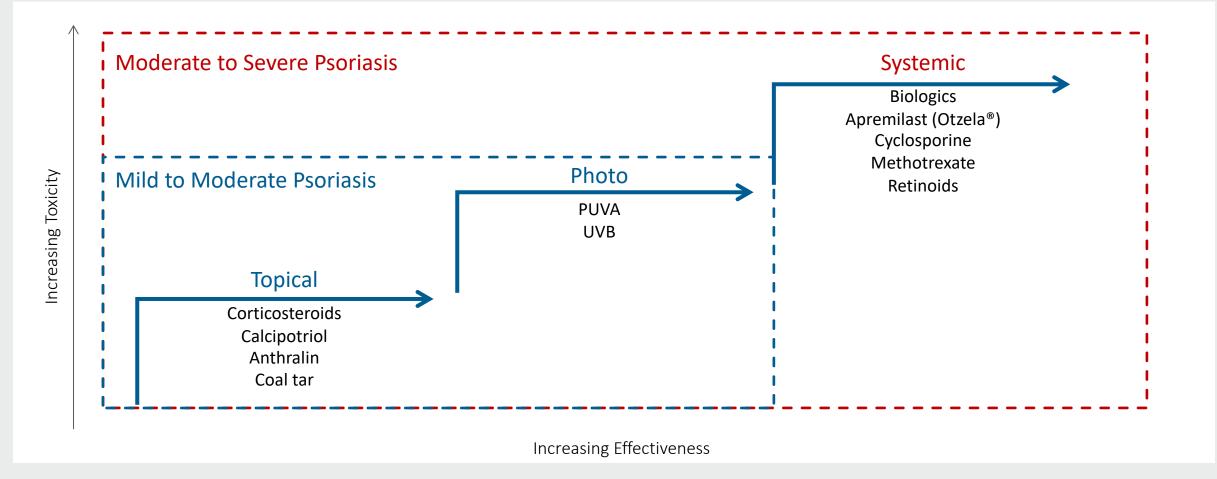
- No dose-dependency in adverse event
- No systemic findings in EKG or vital signs

- No systematic changes in lab values
 - Not a single case of elevated liver enzymes

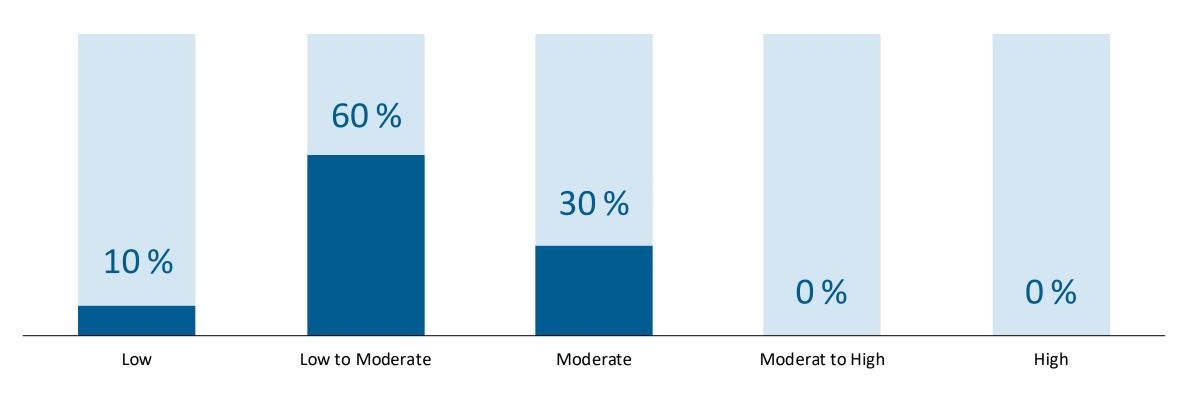

Positioning and Ongoing Phase 1 Program

Psoriasis

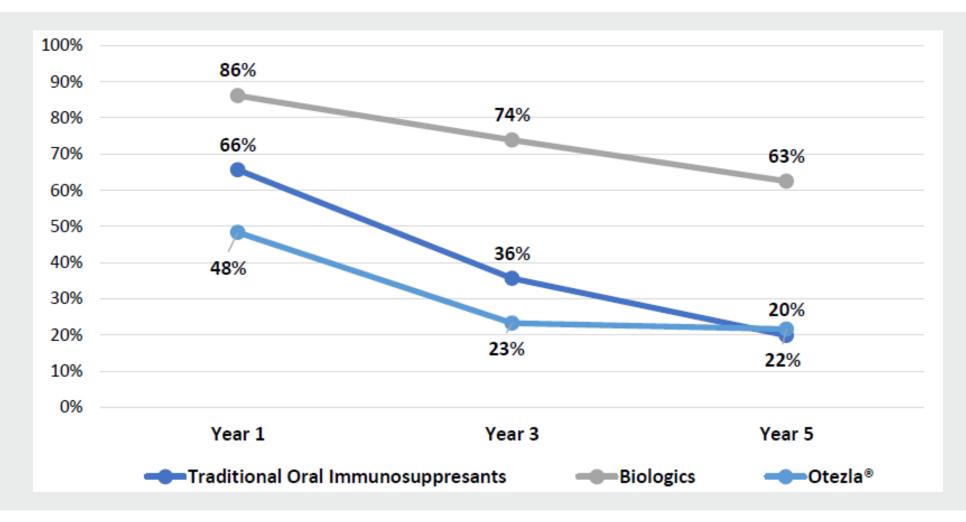
Q&A IMU-935


Mode of Action

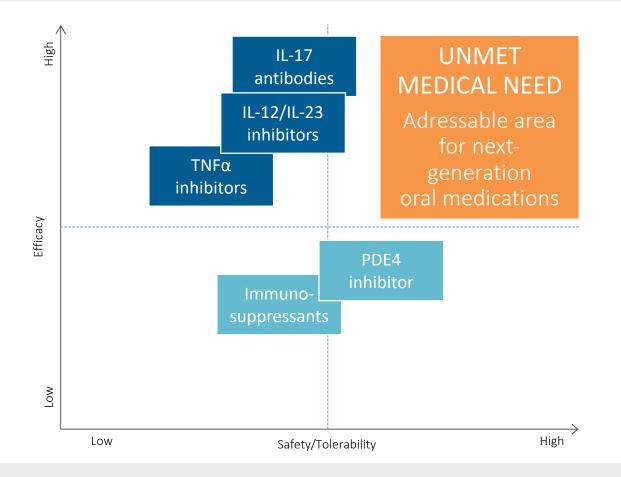
Relevance of Th17 in a Broad Range of Diseases


Treatment Escalation in Psoriasis

Low to Moderate Satisfaction for Oral Immunosuppressants


Moderate to severe psoriasis

Immunic primary market research


Compliance for Different Drug Classes Moderate to Severe Psoriasis

Immunic primary market research

Unmet Need in Psoriasis Care

Expensive Affordable

Positioning and Ongoing Phase 1 Program

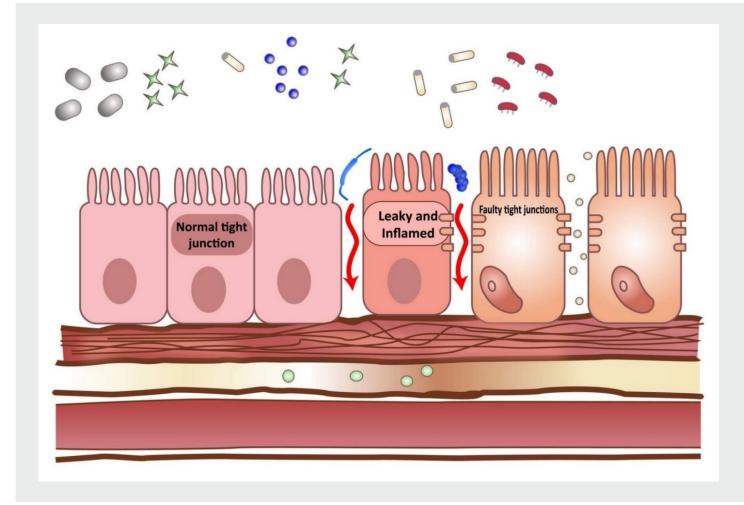
Psoriasis

Q&A IMU-935

Mode of Action

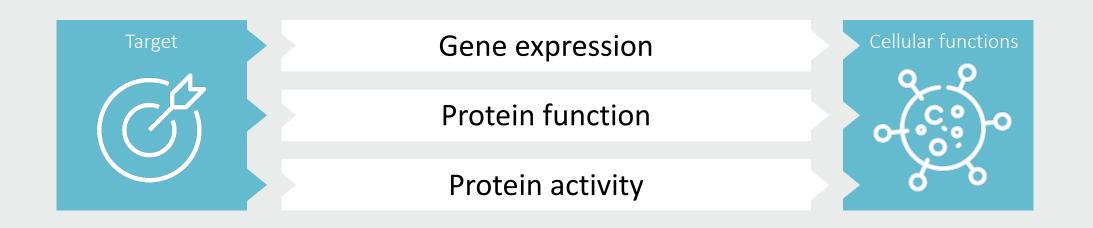
Pharmacology, Mode of Action, Safety

Positioning and Clinical Planning Q&A IMU-856


Pharmacology, Mode of Action, Safety

Positioning and Clinical Planning Q&A IMU-856

Concept of IMU-856: Restoring the Intestinal Barrier Function Without Impairing the Immune System

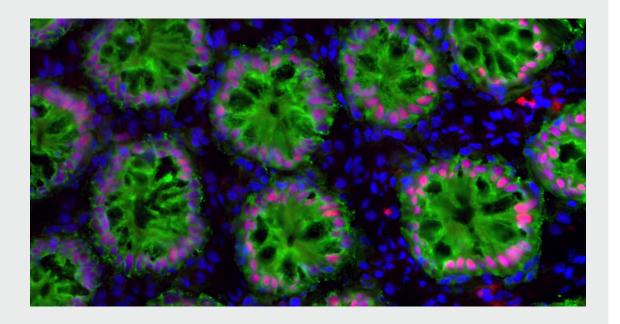

Increased bowel permeability connects the microbiome and the immune system

IMU-856's Target: An Epigenetic Regulator...

... influencing the tightly regulated network of genes and proteins associated with epithelial cell interaction/adhesion through its enzyme activities.

IMU-856: Target Expression and K.O. Model

Target is predominantly expressed in intestinal epithelial cells (IECs) in intestinal crypts


K.O. of target in IECs led to delayed and milder onset of colitis when induced by DSS treatment

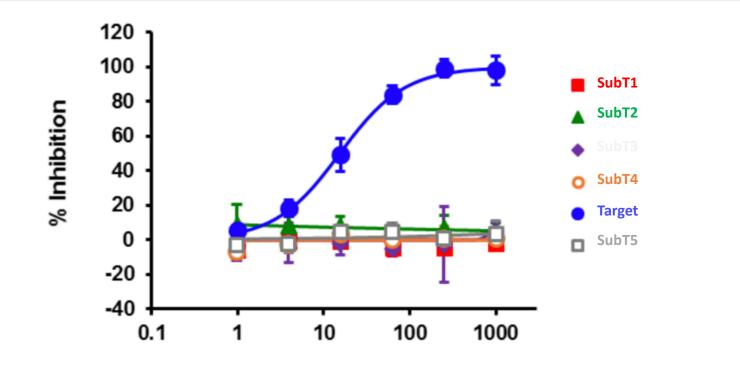
IMU-856's Target: Expression in Human Tissue

Biopsy from inflamed tissue of IBD patient

Target expression in crypt cells

Target expression in tissue

Murine data: highest in thymus, kidney, small intestine and colon



Human data from protein atlas: highest in colon, duodenum and small intestine on RNA level

In other epithelial cells: kidney tubular and lung epithelial cells

IMU-856: High Selectivity Over Other Protein Family Members

IMU-856 inhibits the target's enzyme activity

A unique binding mode allows high selectivity over other subtypes

IMU-856: Attractive Pharmacology Profile

		IMU-856
<i>In vitro</i> cell-free	Protein based test, IC ₅₀	15 nM
<i>In vitro</i> cell	biomarker in HT-29 cells, EC ₅₀	4.3 nM
Coloctivity	Other proteins of same family	No inhibition (1 μM)
Selectivity	87 kinds of enzymes, receptors and channels	No effects (10 µM)
Species differences	Human / Mouse / Rat / Monkey (cell-free test, IC ₅₀)	15/41/28/31 nM
In vivo IBD models	Mouse DSS models (PAD*)	<1 mg/kg/day

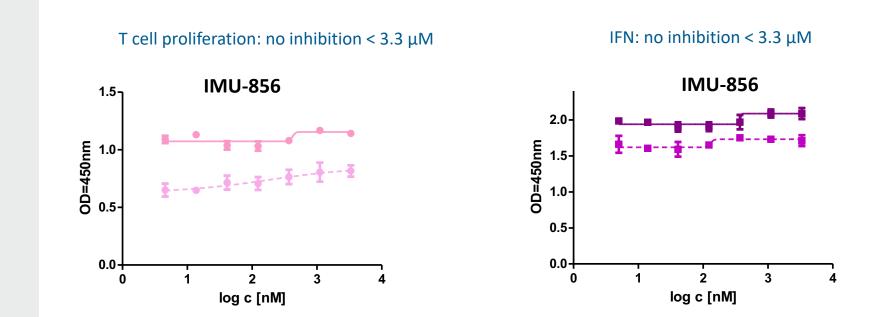
\rightarrow IMU-856 shows pharmacological activity at low concentrations in vitro, cellular and in vivo

IMU-856: In Vivo Activity

Colitis Induction	Setting	Duration	Treatment setting	Doses	Efficacy demonstrated?
1.5% DSS	Induction	8 days	Prevention	0.1, 0.3*, 1*mg/kg p.o.	Yes, dose dependent Read-out: colon length
1.5% DSS	Induction	6 days	Prevention	0.3*mg/kg +/- Tacrolimus* p.o.	Yes, synergistic effect between IMU-856 and Tacrolimus Read-out: colon length
3% DSS	Chronic, recovery	3 cycles (6+4 days)	Prevention	0.1, 0.3*, 1*mg/kg p.o.	Yes, dose dependent Read-out: colon length
1.5% DSS	Chronic, recovery	1 cycle (7+4 days)	Prevention	0.1*, 0.3*, 1*mg/kg p.o.	Yes, dose dependent Read-out: colon length
2.8% DSS	Therapeutic	8 days, 1-5 DSS, 4-8 treatment	Therapeutic	1*mg/kg p.o.	Yes Read-out: Diarrhea score, histological score

\rightarrow IMU-856 demonstrates dose dependent activity in several DSS Colitis Models

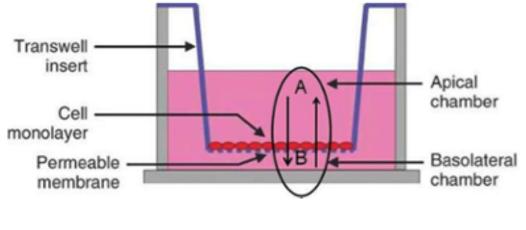
* Significant improvement



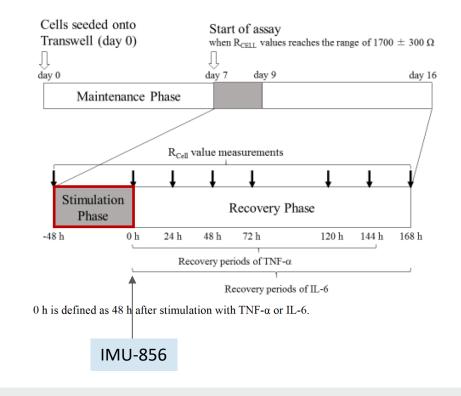
IMU-856: No Impairment of Immune Response

PHA stimulated human PBMCs, two donors (two different colored lines) – 48h

Read-out: proliferation and cytokine secretion



IMU-856 has no impact on T cell proliferation and IFN γ secretion at concentrations up to 3.3 μ M, highest concentration tested. Regarding the estimated plasma level below 1 μ M, we do not expect to see an impact on human immune cells.



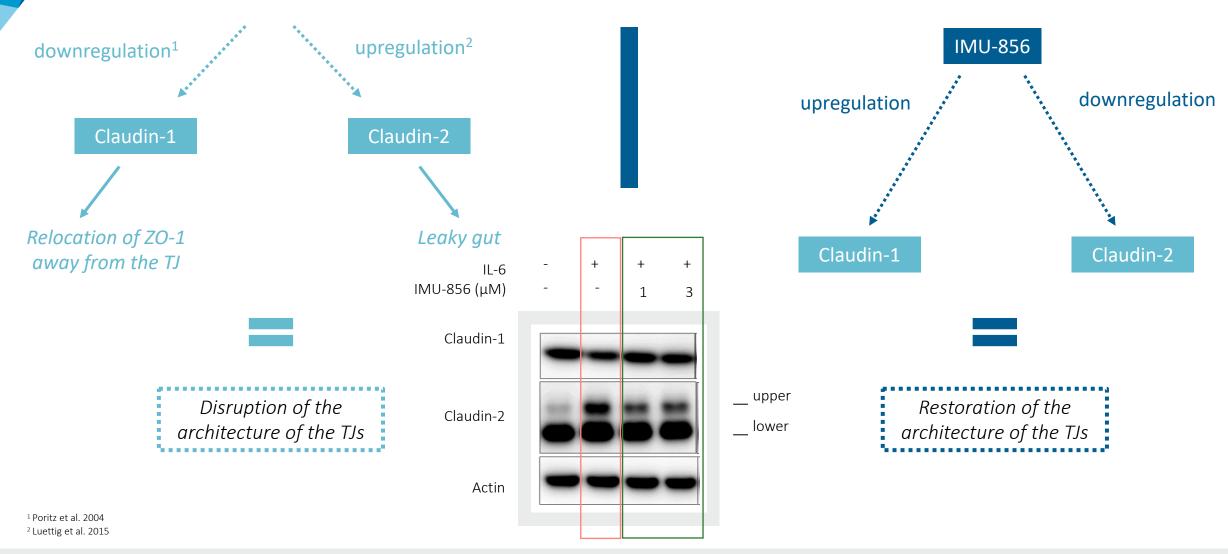
IMU-856: Impact on Intestinal Permeability

Intestinal permeability was measured as TEER^{*} after barrier-disrupting stimulation in Caco-2 cells^{**}

*TEER: transepithelial electrical resistance **Caco-2 cells: Human intestinal epithelial cell lines

> IMU-856 was able to maintain epithelial barrier integrity

IMU-856: Impact on Barrier Function



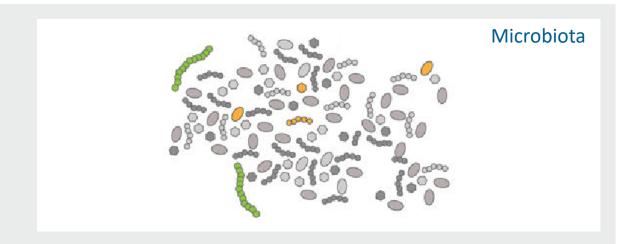
> IMU-856 was able to restore barrier function in cytokine challenged Caco-2 cells

*DMSO vs 3; #DMSO vs 1, \$DMSO vs 0.3; \$DMSO vs. 0.1

Initial Hypothesis on IMU-856's Mode of Action

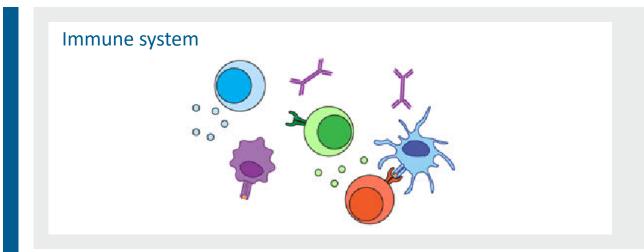
Jean-Frederic Colombel

→ Director of The Susan and Leonard Feinstein
Inflammatory Bowel Disease Center, Director of The
Leona M. and Harry B. Helmsley Inflammatory
Bowel Disease Center
Icahn School of Medicine, Mount Sinai Hospital,
New York


Pharmacology, Mode of Action, Safety

Positioning and Clinical Planning Q&A IMU-856

IMU-856: Hypothesis of Therapeutic Approach



Compartmentalize microbiome and immune system By strengthening the bowel barrier function

Influencing the microbiome

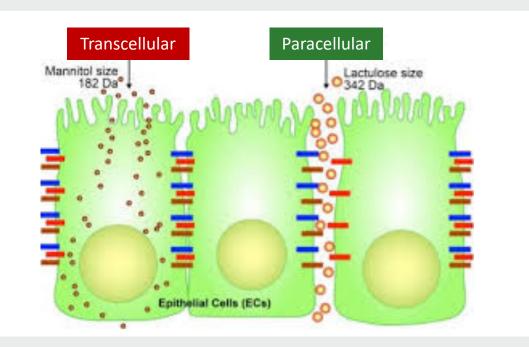
- Changes in nutrition are driving the increase in disease rates
- Diversity of microbiome is good, but data on pathogenicity of particular species is often inconsistent
- Effects of probiotics on disease have been shown (supportive)

Focus on immunosuppression

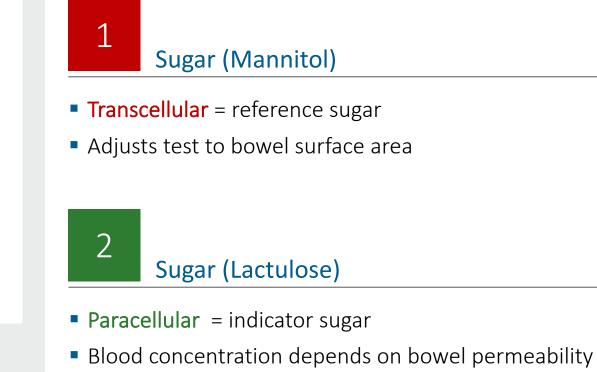
- Stimulation of the immune system by the microbiome cannot be prevented
- Suppression of the secondary inflammatory process
- Usually has unintended consequences in terms of adverse event (infections, malignancies, inability to vaccinate)

IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines


IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

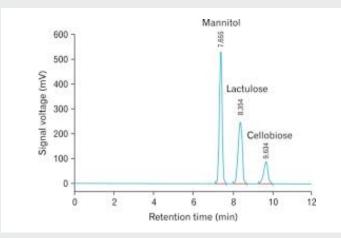

In Vivo Surrogate Marker Test for Bowel Permeability

2-Sugars Test: Mannitol / Lactulose

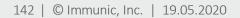
Ratio of lactulose/mannitol is surrogate marker for bowel permeability!

"2-Sugars Test" Logistics

Patient drinks 2-sugar solution


Blood draw about 90-120 min later

2



Lactulose-to-mannitol ratio is determined from plasma

3

Clinical Evaluation of 2-Sugars Test Currently Ongoing

Principal Investigator

Prof. Jane M. Andrews, MBBS, FRAC, PhD, AGAF Royal Adelaide Hospital, Australia

Patient Population

- Healthy volunteers
- Patients with
 - Diarrhoea-predominant irritable bowel syndrome (IBS-D)
 - Patients with cancer who receive Immune Checkpoint Inhibitor therapy (ICI)
 - Patients with quiescent UC and CD

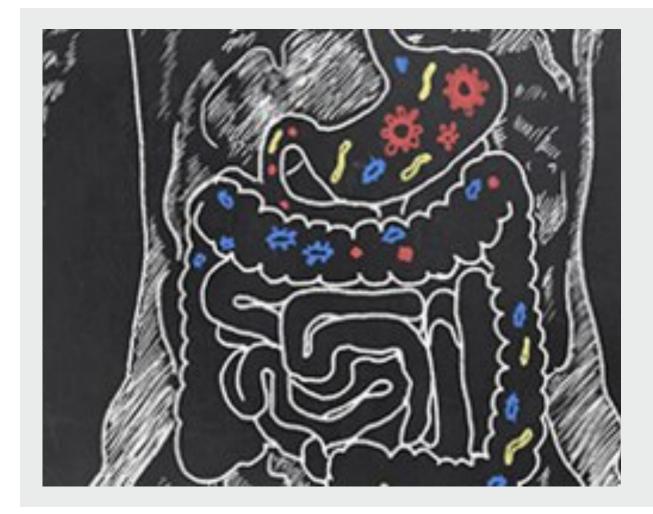
- Pilot investigator study to validate a blood-based bowel permeability test using mannitol/lactulose
- No use of IMU-856

Ongoing and enrolling

IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

IMU-856: Potential Use in Crohn's Disease



Post-operative setting

Maintenance of remission in CD

IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

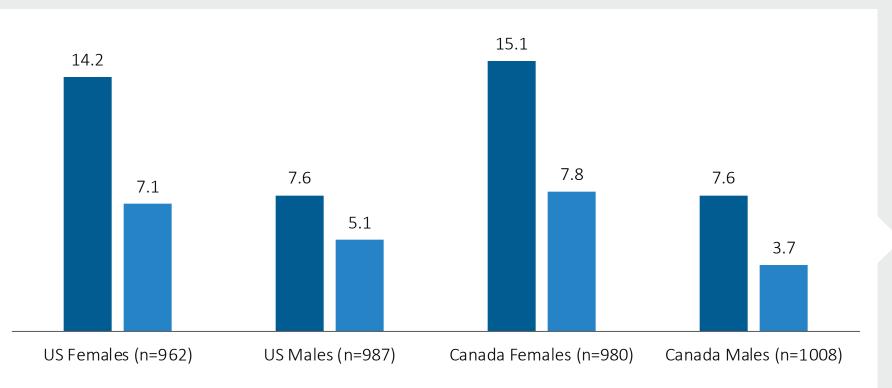
Rome IV Diagnostic Criteria for Irritable Bowel Syndrome (IBS)

Rome IV Diagnostic Criteria for IBS

Recurrent abdominal pain, on average, at least one day per week in the previous three months, associated with two or more of the following criteria:

Defecation

A change in stool frequency



A change in stool form (appearance)

Criteria must be fulfilled for the last three months, with symptom onset at least six months before diagnosis

Lacy BE et al. Gastroenterology. 2016; 150:1393-1407

IBS: Prevalence in Major Countries Change From Rome III to Rome IV Criteria

Rome III IBS rate (%) by sex age groups in the US and Canada survey samples (without census weighting)
Rome IV IBS rate (%) by sex age groups in the US and Canada survey samples (without census weighting)

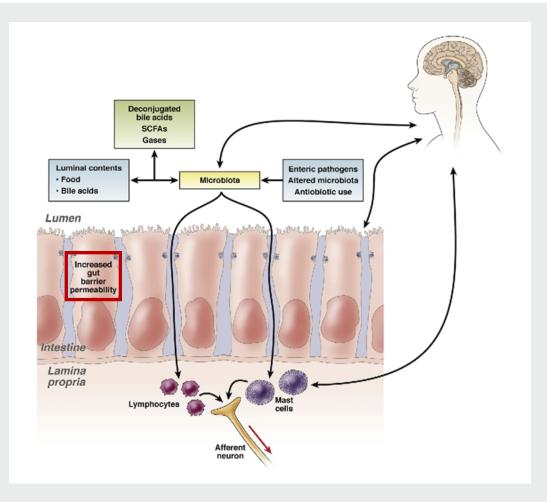
Despite the change of the diagnostic criteria, the prevalenve of IBS is about 5-7% in developed countries

Palsson et al. Gastroenterology 2016

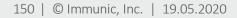
IBS-D: Competitive Landscape

Sponsor	Drug	Route of Admin	Mechanism of Action	Stage of Development	Indication	Market Entry	Peak Sales Est.
Astellas Pharma	Ramosetron (Irribow®)	Oral	serotonin 5-HT3 receptor antagonist	Approved 2008 (Japan)	IBS-D	2015	~\$29.6M in 2023 ¹
Prometheus Laboratories	Alosetron (Lotronex®)	Oral	serotonin 5-HT3 receptor antagonist	Approved 2002 (US)	only for women with severe IBS-D	2002	~\$52.5M in 2023 ²
Allergan	Eluxadoline (Viberzi®)	Oral	μ- and κ-opioid receptor agonist and δ-opioid receptor antagonist	Approved 2015 (US & EU)	IBS-D	2015	~\$440M in 2020 ³
Salix	Rifaximin (Xifaxan®)	Oral	binding to the β- subunit of bacterial RNA polymerase	Approved (US)	IBS-D, traveler's diarrhea, hepatic encephalopathy.	2013	~\$1.75B in 2019 ⁴

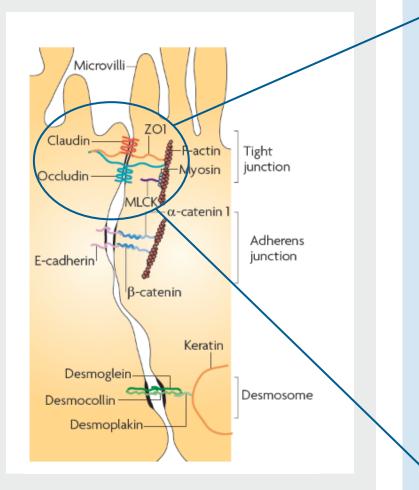
The global therapeutics market for irritable bowel syndrome is set to rise in value from \$589.6 million in 2013 to \$1.5 billion by 2023, representing a high compound annual growth rate of almost 9.9%, says GlobalData.

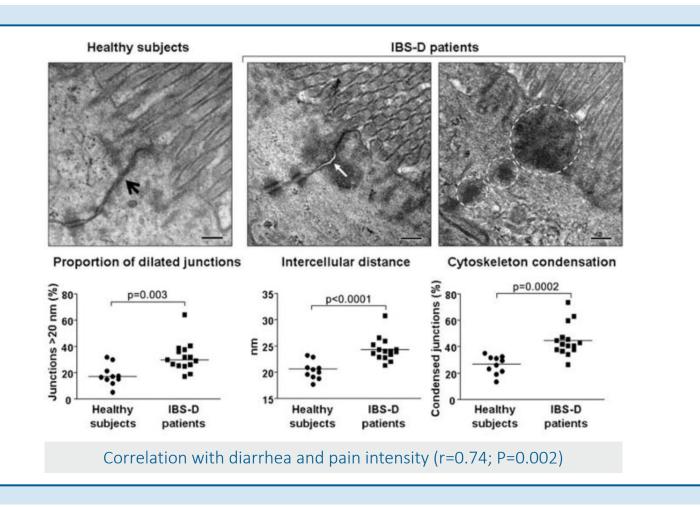

^{1, 2} GlobalData

^{3, 4} (Mullard, 2015)

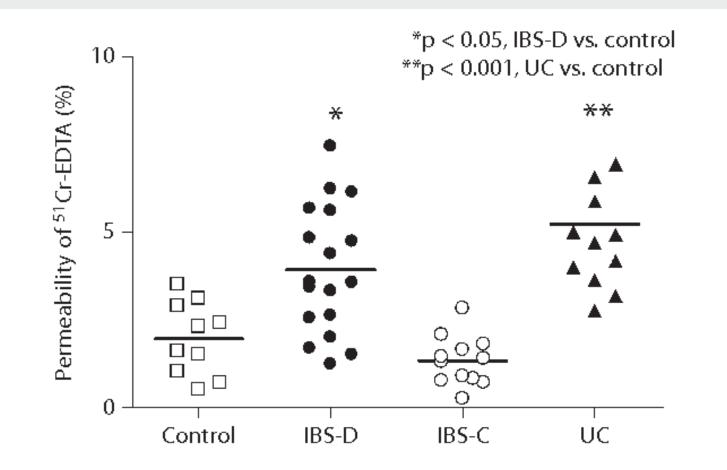

IBS-D: diarrhea-predominant IBS

IBS: A Disease Affecting the Gut-Brain Axis



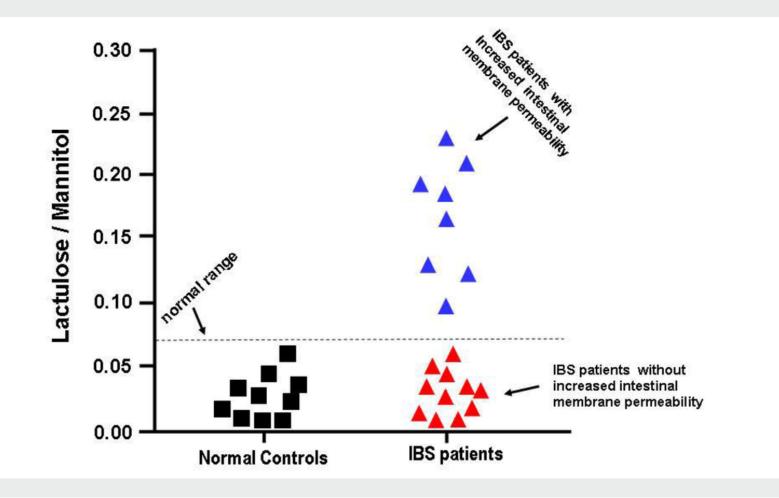

Shanahan F, Quigley EM. Gastroenterology. 2014 May;146(6):1554-63

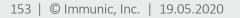
IBS-D: Morphological Evidence of Tight Junction Abnormalities in the Jejunum of Patients - Correlates with Abdominal Pain



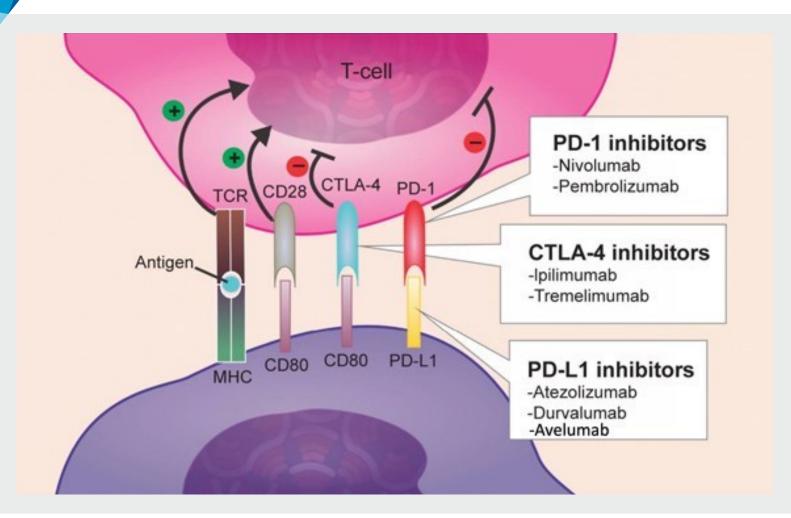
Martinez C et al., Gut 2013;62:1160-8

IBS-D: Bowel Permeability is Similar to IBD




Gecse K, Róka R, Séra T, Rosztóczy A, Annaházi A, Izbéki F, Nagy F, Molnár T, Szepes Z, Pávics L, Bueno L, Wittmann T. Digestion. 2012;85(1):40-6

Sugar Test in IBS Patients: Increased Permeability Connected to Symptoms



IMU-856 | Concept of Clinical Activity

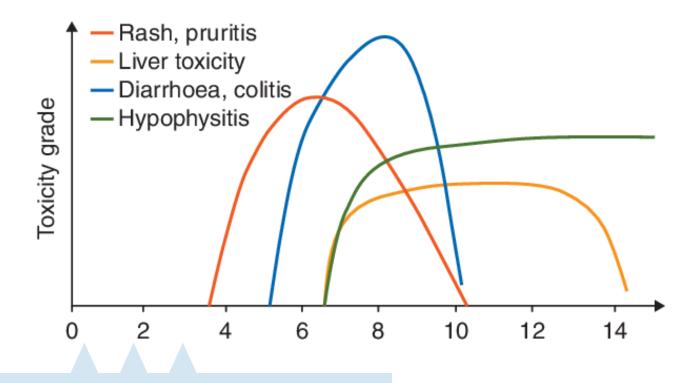
<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

Immune Checkpoint Inhibitors (ICI)

Tumor cells may up-regulate suppressive signaling to T cells via CTLA-4 and PD1, in order to evade the immune anti-tumor response. Checkpoint inhibitors block these inhibitory signals, thereby re-activating the immune response to tumor cells.

Immunic

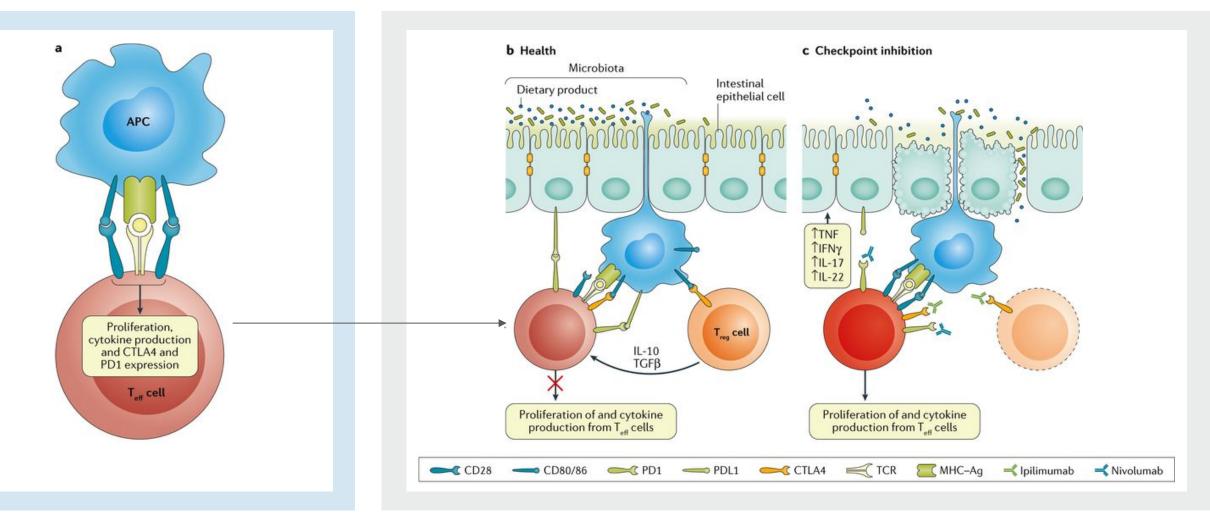
De Mello RA et al. 2017 PMID 2803719


ICI: Rates of Immune-Related Adverse Events

	Nivolumab p Ipilimumab (Nivolumab (n = 313)		lpilimumab (n = 311)	
Side effects of treatment	All grades	Grade 3/4	All grades	Grade 3/4	All grades	Grade 3/4
All organ systems	300 (96%)	184 (59%)	270 (86%)	67 (21%)	268 (86%)	86 (28%)
Skin (rash, pruritus, vitiligo)	193 (62%)	20 (6%)	144 (46%)	7 (2%)	173 (56%)	9 (3%)
Gastrointestinal tract	150 (48%)	47 (15%)	70 (22%)	11 (4%)	117 (38%)	36 (12%)
Diarrhea	142 (45%)	29 (9%)	67 (21%)	9 (3%)	105 (34%)	18 (6%)
Colitis	40 (13%)	26 (8%)	7 (2%)	3 (1%)	35 (11%)	24 (8%)
Liver (transaminase elevation)	102 (33%)	62 (20%)	25 (8%)	9 (3%)	23 (7%)	5 (2%)
Endocrine organs	106 (34%)	20 (6%)	54 (17%)	5 (2%)	36 (12%)	8 (3%)
Hypothyroidism	53 (17%)	1 (<1%)	33 (11%)	0	14 (5%)	0
Hyperthyroidism	35 (11%)	3 (1%)	14 (4%)	0	3 (1%)	0
Adrenalitis	11 (4%)	6 (2%)	4 (1%)	2 (1%)	4 (1%)	1 (<1%)
Hypophysitis	23 (7%)	5 (2%)	2 (1%)	1 (<1%)	12 (4%)	5 (2%)
Pancreas (lipase/amylase elevation)	70 (22%)	43 (14%)	47 (15%)	20 (6%)	33 (11%)	16 (5%)
Lung (pneumonitis)	24 (8%)	3 (1%)	6 (2%)	1 (<1%)	6 (2%)	1 (<1%)
Kidney (creatinine elevation, nephritis)	22 (7%)	6 (2%)	4 (1%)	1 (<1%)	5 (2%)	1 (<1%)
Hypersensitivity/infusion reactions	13 (4%)	0	14 (4%)	1 (<1%)	8 (3%)	1 (<1%)

Adapted from: Wolchok et al., N Engl J Med 2017; 377: 1345–56

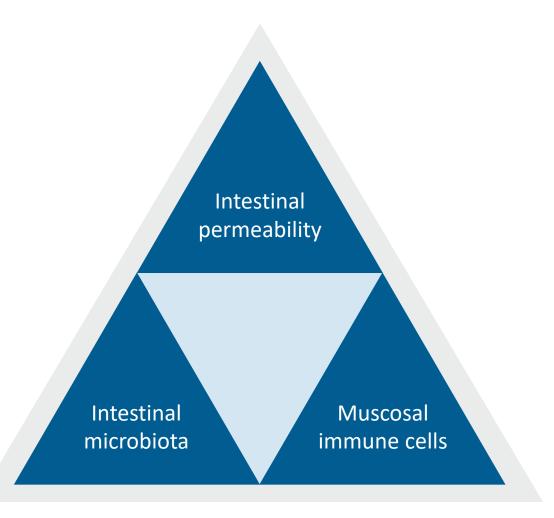
ICI: Timing of Immune-Related Adverse Events



Insult to bowel barrier function that triggers these "autoimmune-like" reactions ???

John B A G Haanen, et al. Annals of oncology 2017

Suggested Hypothesis: Checkpoint Inhibitors Cause Injury to Bowel Barrier Function


Samaan et al., Nature Reviews Gastroenterology & Hepatology volume15, pages222-234 (2018)

IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

Relationship Between Intestinal Permeability, Intestinal Microbiota, and Mucosal Immune Cells

Bischoff et al. BMC Gastroenterol. 2014;14:189

160 | © Immunic, Inc. | 19.05.2020

IMU-856: Medical Positioning

IMU-856 is a non-immunosuppressive treatment for gastrointestinal diseases."

Maintaining immunocompetency in patients may

Avoid infections

- Allow vaccinations during therapy
- Maintain cancer surveillance

IMU-856 targets the diseasecausing trigger"

Improvement of the bowel barrier function may

Remove bacterial triggers for relapse

Maintain remission

Reduce symptoms

Potentially providing LONG-TERM SAFETY

Potentially differentiating as MAINTENANCE DRUG

IMU-856 | Concept of Clinical Activity

<i>In Vivo</i> Biomarker	Potential	Potential
Test for Intestinal	Indication:	Indication:
Permeability	Crohn's Disease	IBS-D
Potential Indication: ICI Colitis	Medical Positioning	Development Timelines

IMU-856: Development Concept

Includes patient population for confirmation of pharmacodynamic activity

- Safety and pharmacokinetics in healthy volunteers (Part A SAD, Part B MAD)
- In Part C, patients with IBS-D and IBD will be included
- 2-sugar test performed for bowel permeability to monitor IMU-856 therapy effects

IMU-856

Pharmacology, Mode of Action, Safety

Positioning and Clinical Planning Q&A IMU-856

Immunic Therapeutics

Summary and Closing Remarks

Summary and Highlights

Advanced and well balanced pipeline: Three products in development

Cash position of USD 18.6 million (as of March 31, 2020)

Phase 2 data read-outs ahead: Several clinical phase 2 trials with IMU-838 expected to read-out in the next couple of months

Raised approximately USD 17.3 million in April 2020 via a registered direct offering and ATM issuances, substantially extending cash runway beyond important value inflection points

Phase 2 in COVID-19 to start soon IMU-838 is a potential COVID-19 solution Broad-spectrum antiviral activity

Skilled and highly motivated team delivering on promise

Multiple Near-Term Value Drivers

Maturing pipeline

Major milestones expected in the next 18 months

Data from phase 2 trial in RRMS expected in 3Q/2020 Would pave the way towards phase 3

COVID-19 global phase 2 trial expected to start soon First data expected in late summer

Trial design would allow for expansion into confirmatory phase 3 trial this year

- PSC phase 2 clinical data from Mayo Clinic IST expected in early 2021
- \rightarrow S
 - Safety and tolerability results of the oral IL-17 inhibitor IMU-935 phase 1 SAD and MAD parts expected later this year

First activity data for IMU-935 from psoriasis part of phase 1 trial anticipated next year

New approach for treating gastrointestinal diseases with IMU-856 entering clinical phase 1 this year

Thank you!

Immunic, Inc.

1200 Ave of the Americas, Suite 200 New York, NY 10036 USA

Jessica Breu Manager IR & Communications & Phone: +49 89 2080 477 09 Email: ir@imux.com

